首页> 外文学位 >Control of a magnetically levitated ventricular assist device .
【24h】

Control of a magnetically levitated ventricular assist device .

机译:磁悬浮心室辅助装置的控制。

获取原文
获取原文并翻译 | 示例

摘要

This work presents theoretical and experimental means for achieving impeller stability in a magnetically levitated left ventricular assist device (LVAD). These types of medical devices are designed to boost the native heart's ability to pump blood by means of mechanical energy transfer using a rotating impeller. Magnetic suspension of the impeller eliminates bearing friction and reduces blood damage, but it requires active controls that monitor the impeller's position and speed in order to generate the forces and torques required to regulate its dynamic behavior. To accomplish this goal, this work includes: (1) a dynamic system model derived using energy and momentum conservation, (2) dynamic analysis including stability, controllability and observability, and (3) development of two control algorithms: proportional integral derivative and sliding mode control. Experimental validation included component behavior, model accuracy, and the characterization of controller performance using a physiological simulator. The system model proved to be an adequate representation of the system while levitating in air, but additional research is needed to model hydrodynamic and gyroscopic effects. After the prototype's subcomponents were tested, calibrated and/or modified to fit the control requirements, both control strategies were successful in controlling the rotor as it spun at 6000 rpm pumping 6L/min of water at 80mmHg. A maximum speed of 6500 rpm was achieved with speed control within 5% over most of the operating range. The control platform and many of the methods presented here are continually being used and improved towards the implantation of the device in a human subject in the future.
机译:这项工作提出了在磁悬浮左心室辅助设备(LVAD)中实现叶轮稳定性的理论和实验手段。这些类型的医疗设备旨在通过使用旋转叶轮的机械能传递来增强天然心脏的泵血能力。叶轮的磁悬浮消除了轴承摩擦并减少了血液损害,但是它需要主动控制来监视叶轮的位置和速度,以便产生调节其动态行为所需的力和扭矩。为了实现这一目标,这项工作包括:(1)使用能量和动量守恒推导的动态系统模型;(2)包括稳定性,可控性和可观察性的动态分析;以及(3)两种控制算法的开发:比例积分微分和滑动模式控制。实验验证包括组件行为,模型准确性以及使用生理仿真器对控制器性能的表征。该系统模型被证明可以在空中悬浮时很好地表示该系统,但是还需要对流体动力和陀螺效应进行建模的其他研究。在对原型的子组件进行测试,校准和/或修改以适应控制要求之后,两种控制策略均成功地控制了转子,因为它以6000 rpm的转速旋转,并以80mmHg的速度泵入6L / min的水。在大多数工作范围内,将速度控制在5%以内,可以达到6500 rpm的最大速度。在此提出的控制平台和许多方法将继续使用,并在将来朝着将设备植入人类对象的方向进行改进。

著录项

  • 作者

    Gomez, Arnold David.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.
  • 年度 2009
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号