首页> 外文学位 >Hydrocode and microstructural analysis of explosively formed penetrators.
【24h】

Hydrocode and microstructural analysis of explosively formed penetrators.

机译:爆炸性穿透器的水压法和微观结构分析。

获取原文
获取原文并翻译 | 示例

摘要

Issues in simulation modeling, materials and high-energy explosives have been the three areas of research that have had the most impact on warhead technology. The present study focused on the materials issues and simulations and the relationship between the two in the case of Explosively Formed Penetrators (EFPs).; Tantalum (Ta), Armco iron (Fe) and oxygen-free high conductivity copper (OFHC Cu) EFPs were characterized using optical and transmission electron microscopy and microhardness testing, in order to understand the complex deformation mechanisms operating under the high strains (up to 300%) and high strain rates (of the order of 104 – 105 s–1 ) the EFPs are subjected to. Whereas dynamic recovery (DRV) was the dominant mechanism in Ta, Cu was characterized by complete dynamic recrystallization (DRX) and associated shear banding. Fe, on the other hand, showed features common to both Ta and Cu. It must be noted that Ta and Fe have a BCC crystal structure and Cu has a FCC crystal structure. Also, the melting point for Ta is 3020°C compared to 1539°C for Fe and 1083°C for Cu. Extensive twinning (Neumann banding) occurred in Fe on shock wave interaction with the liner. Subsequent deformation caused the twins to deform, stretch and fragment, akin to the shaped charge jet formation and fragmentation process. This process resulted in the formation of DRV and DRX structures and shear bands. This shows that twinning, DRV, DRX and shear band formation are mechanisms not quite independent of each other, at least in the EFP regime.; Validations of the AUTODYN-2D hydrocode were performed in the case of each material not only considering the geometrical factors (which is the general practice) but also using microstructures and microhardness data. Plastic strain and temperature contour plots were correlated with observed microstructures, and microhardness maps matched with computer generated yield stress plots. It was shown that although both the Zerilli-Armstrong and Johnson-Cook strength models predicted the final EFP shapes fairly well, they showed stark differences in the yield stress predictions. Whereas Zerilli-Armstrong model predictions were better for Ta and Johnson-Cook for Fe, both models were equally good for Cu.
机译:模拟建模,材料和高能炸药方面的问题一直是对弹头技术影响最大的三个研究领域。本研究的重点是材料问题和模拟,以及在爆炸性穿透器(EFP)情况下两者之间的关系。使用光学和透射电子显微镜以及显微硬度测试对钽(Ta),阿姆科铁(Fe)和无氧高电导率铜(OFHC Cu)EFP进行了表征,以了解在高应变下(直至300%)和高应变率(大约为10 4 – 10 5 s –1 )EFP受到的影响。动态恢复(DRV)是Ta中的主要机理,而铜的特征在于完全动态重结晶(DRX)和相关的剪切带。另一方面,Fe表现出Ta和Cu共有的特征。必须注意,Ta和Fe具有BCC晶体结构,而Cu具有FCC晶体结构。另外,Ta的熔点为3020℃,而Fe的熔点为1539℃,Cu的熔点为1083℃。 Fe在冲击波与衬套相互作用时发生大量孪晶(Neumann带)。随后的变形导致双胞胎变形,拉伸和破碎,类似于成形的电荷射流的形成和破碎过程。该过程导致DRV和DRX结构和剪切带的形成。这表明孪生,DRV,DRX和剪切带形成是机制,彼此之间并不是完全独立的,至少在EFP模式下是如此。在每种材料的情况下,不仅要考虑几何因素(这是常规做法),而且还要使用显微组织和显微硬度数据,对AUTODYN-2D液压编码进行验证。塑性应变和温度等高线图与观察到的微观结构相关,显微硬度图与计算机生成的屈服应力图相匹配。结果表明,尽管Zerilli-Armstrong和Johnson-Cook强度模型都很好地预测了最终的EFP形状,但它们在屈服应力预测中显示出明显的差异。 Zerilli-Armstrong模型对Ta和Fe的Johnson-Cook预测更好,而Cu对Cu的预测同样好。

著录项

  • 作者

    Pappu, Sridhar.;

  • 作者单位

    The University of Texas at El Paso.;

  • 授予单位 The University of Texas at El Paso.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 221 p.
  • 总页数 221
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号