首页> 外文学位 >Overexpression of mannitol-1-phosphate dehydrogenase increases mannitol production and confers salt and chilling tolerance in transgenic petunia cv. Mitchell.
【24h】

Overexpression of mannitol-1-phosphate dehydrogenase increases mannitol production and confers salt and chilling tolerance in transgenic petunia cv. Mitchell.

机译:过量表达甘露醇-1-磷酸脱氢酶可增加甘露醇的产量,并赋予转基因矮牵牛cv耐盐和耐寒性。米切尔

获取原文
获取原文并翻译 | 示例

摘要

Diploid petunia plants (Petunia hybrida, cv. Mitchell) transformed with a bacterial gene (mtl D) encoding mannitol-1-phosphate dehydrogenase enzyme (MTL D), resulting in high mannitol expression, were developed and studied in this research. Transgenic lines and wild type control plants were exposed to salinity and chilling stress with the express goal of delineating the impact of mannitol on these abiotic stresses. Phenotypically, there was no difference in growth between in vivo wild type and transgenic lines under non-stress conditions. However, transgenic lines expressing high mannitol levels were found to exhibit a greater capacity to tolerate salinity and chilling stresses compared to wild type and transgenic lines expressing low mannitol levels. Enhanced salinity tolerance was observed in seed germination (T2 generation), and in vegetative growth and floral development of transgenic lines expressing high mannitol levels. Also, based upon foliage symptoms and membrane leakage, transgenic lines expressing high mannitol levels were more tolerant of chilling stress compared to with wild type and transgenic lines expressing low mannitol levels. Carbohydrate analysis of wild type and transgenic plants showed that mannitol was the single carbohydrate most affected by plant lines. Two transgenic lines (M3 and M8) consistently had higher mannitol expression levels when compared to wild type and the other two transgenic lines (M2 and M9) under non-stress and stress conditions. Therefore, the function of high mannitol expression should be considered in developing petunia plants with improved tolerance to salinity and chilling stresses. However, assuming 90% water content in leaf tissue, leaf osmotic potential of high mannitol expressing lines contributed by mannitol accounted for only 0.006%–0.01% of increased osmoregulation caused by salinity stress, and 0.04%–0.06% of the increase in osmotic potential caused by chilling stress, respectively. Quantitatively, mannitol appears not to play a role as an osmoregulator in osmotic adjustment in response to both salinity and chilling stresses. Rather, the data from this research suggest that mannitol may function as an important osmoprotectant in enhancing salt and chilling tolerance of those transgenic petunia lines expressing high mannitol levels.
机译:二倍体矮牵牛植物( Petunia hybrida,cv。Mitchell )已被编码甘露醇-1-磷酸脱氢酶(MTL D)的细菌基因( mtl D )转化,甘露醇的表达,在这项研究中得到发展和研究。转基因品系和野生型对照植物暴露于盐分和低温胁迫下,其明确目标是描绘甘露醇对这些非生物胁迫的影响。从表型上看,在非胁迫条件下,体内野生型和转基因品系之间的生长没有差异。然而,与表达低甘露醇水平的野生型和转基因品系相比,发现表达高甘露醇水平的转基因品系表现出更大的耐受盐度和寒冷胁迫的能力。在种子发芽(T2代)以及表达高甘露醇水平的转基因品系的营养生长和花发育中观察到提高的耐盐性。而且,基于叶子的症状和膜渗漏,与野生型和低甘露醇水平的转基因品系相比,表达高甘露醇水平的转基因品系对寒冷胁迫的耐受性更高。对野生型和转基因植物的碳水化合物分析表明,甘露醇是受植物株系影响最大的单一碳水化合物。与野生型相比,两个转基因品系(M3和M8)在非胁迫和胁迫条件下始终具有较高的甘露醇表达水平,而其他两个转基因品系(M2和M9)则始终具有较高的甘露醇表达水平。因此,在开发对盐度和寒冷胁迫耐受性提高的矮牵牛植物中,应考虑高甘露醇表达的功能。但是,假设叶片组织中的水分含量为90%,则甘露醇促成的高甘露醇表达细胞系的叶片渗透势仅占盐分胁迫导致渗透压增加的0.006%–0.01%,渗透势增加的0.04%–0.06%分别由寒冷压力引起。从数量上看,甘露醇似乎在对盐度和低温胁迫的反应中,在渗透调节中没有作为渗透调节剂起作用。相反,这项研究的数据表明,甘露醇可能在增强表达高甘露醇水平的那些矮牵牛系的盐分和耐寒性中起重要的渗透保护剂的作用。

著录项

  • 作者

    Chiang, Yu-Jen.;

  • 作者单位

    Colorado State University.;

  • 授予单位 Colorado State University.;
  • 学科 Biology Plant Physiology.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 植物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号