首页> 外文学位 >The physics and chemistry of metal oxide composites as anode materials for lithium-ion batteries.
【24h】

The physics and chemistry of metal oxide composites as anode materials for lithium-ion batteries.

机译:金属氧化物复合材料作为锂离子电池负极材料的物理和化学性质。

获取原文
获取原文并翻译 | 示例

摘要

Tin oxide composite (SnO:X, X = (B2O3)x(P 2O5)y, SiO2) glasses represent a new class of material for the anode of lithium-ion rechargeable cells. These materials demonstrate discharge capacities on the order of 1000 mAh/(g Sn), which is consistent with the alloying limit of 4.4 Li atoms per Sn atom. These materials also demonstrate significant irreversible capacities, which is proportional to the oxygen content (i.e., O in SnO:X). It is shown (by electrochemical data, in-situ x-ray diffraction studies and in-situ Mössabuer effect studies) that during the first discharge, the oxygen intimately bonded to Sn reacts with lithium to give Li2O, leaving small clusters of metallic Sn that subsequently alloy with lithium. The Li2O and X atoms (collectively known as ‘Spectator Atoms’) are inert to lithium. The subsequent cycling, or reversibility, of these materials is linked to the size of the Sn clusters that form during the first discharge. Those materials with high spectator atom count (as in SnO:(B2O3 )0.5(P2O5)0.5 glass) produce smaller Sn clusters during first discharge than those materials with low spectator atom count (as in SnO:(B2O3)0.1(P2O 5)0.l glass). Furthermore, it is observed that these Sn clusters grow in size by the repeated discharge and charge of the cell. This explains the capacity loss in these types of materials after many cycles. The size of the Sn clusters reach a steady state size, and a speculative model that links the steady state cluster size to the number of spectator atoms is proposed. The rate of aggregation of Sn clusters can be controlled by several factors: the voltage range chosen for discharge and charge, the number of spectator atoms in the matrix, and the temperature. Studies of other alloying metal oxide composites (i.e., PbO:X and Sb2O3:X) are also presented. These materials follow a similar reaction mechanism as SnO:X composites do, but the rate of aggregation of the alloying metal differs between all three.
机译:氧化锡复合材料(SnO:X,X =(B 2 O 3 )x(P 2 O 5 y ,SiO 2 )玻璃代表了用于锂离子可充电电池阳极的新型材料。这些材料的放电容量约为1000 mAh /(g Sn),与每个Sn原子4.4个Li原子的合金极限一致。这些材料还显示出显着的不可逆容量,该容量与氧含量(即SnO:X中的O)成比例。通过电化学数据,原位x射线衍射研究和原位Mössabuer效应研究表明,在首次放电过程中,与Sn紧密结合的氧与锂反应生成Li 2 O,留下小的金属锡簇,随后与锂形成合金。 Li 2 O和X原子(统称为“ Spectator Atoms”)对锂是惰性的。这些材料的后续循环或可逆性与第一次放电期间形成的Sn团簇的大小有关。那些具有高观众原子数的材料(如SnO:(B 2 O 3 ] 0.5 (P 2 O 5 0.5 玻璃)在首次放电时产生的Sn团簇比那些具有低观众原子数的材料(如SnO:(B 2 O 3 0.1 (P 2 O 5 0.l 玻璃) 。此外,观察到这些Sn簇通过单元的重复放电和充电而尺寸增大。这解释了在多次循环后这些类型的材料的容量损失。 Sn团簇的大小达到稳态大小,并提出了一个将稳态团簇大小与旁观者原子数联系起来的推测模型。 Sn团簇的聚集速率可以通过几个因素控制:为放电和充电选择的电压范围,基质中的旁观者原子数以及温度。还介绍了其他合金化金属氧化物复合材料(即PbO:X和Sb 2 O 3 :X)的研究。这些材料遵循与SnO:X复合材料相似的反应机理,但合金金属的聚集速率在这三种材料之间均不同。

著录项

  • 作者

    Courtney, Ian Anthony.;

  • 作者单位

    Dalhousie University (Canada).;

  • 授予单位 Dalhousie University (Canada).;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 183 p.
  • 总页数 183
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 O49;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号