首页> 外文学位 >How sea ice microstructure influences the polar transport of salts from the ocean into the atmosphere.
【24h】

How sea ice microstructure influences the polar transport of salts from the ocean into the atmosphere.

机译:海冰的微观结构如何影响盐从海洋到大气的极性迁移。

获取原文
获取原文并翻译 | 示例

摘要

Sea ice appears to form an impenetrable boundary at the ocean-atmosphere interface in polar regions, yet in fact its porous structure provides critical pathways for the exchange of heat, gases, salts, and other chemical species impacting the global climate. It is a complex media composed of ice, liquid brine, air pockets, and salt precipitates. The importance of microstructure on bulk properties of sea ice (e.g., albedo, permeability, conductivity) is becoming increasingly more relevant in a changing climate. A primary importance of permeability and the corresponding brine channel network is for providing a mechanism for transporting salts to the surface snow and atmosphere interface. Once exposed to air, bromide and other salts are photochemically activated into reactive halogen species, and play a role in many atmospheric chemical interactions, such as tropospheric ozone depletion.;By combining measurements from ion chromatography (IC), x-ray micro-fluorescence (XRF), and x-ray micro-computed tomography (muCT), it was possible to trace the transport of salts from the ocean, through brine channels, and into the surface snow. IC was used to analyze the chemical signature of blowing snow, surface snow, and sea ice collected from the Ross Sea, Antarctica. Differences in ionic ratios provided insight into the role of blowing snow in the activation of bromine. Since salts originate in the ocean and are transported through the ice, it was critical to have a precise description of the location of salts within sea ice. XRF added to the understanding of microstructural and stratigraphic location by providing elemental maps for each salt. This illustrated that salts are located primarily in tubular channels and between grain boundaries of the ice crystal lattice. In order to more completely elucidate brine transport through sea ice, this information was augmented with a quantitative description of the brine network measured using muCT. From these measurements, a topological network was constructed, allowing for the analysis of brine channel geometry and connectivity. This 3-D characterization of the shape and structure of pathways transporting salts through sea ice provided detailed insight into how sea salts can mobilize through sea ice and later play critical roles in tropospheric chemical reactions.
机译:海冰似乎在极地地区的海洋与大气界面处形成了一个不可穿透的边界,但事实上,其多孔结构为热,气体,盐和其他影响全球气候的化学物质的交换提供了关键的途径。它是由冰,液体盐水,气穴和盐沉淀物组成的复杂介质。在气候变化的情况下,微观结构对海冰整体性质(例如反照率,渗透性,电导率)的重要性越来越重要。渗透性和相应的盐水通道网络的主要重要性在于提供一种将盐类输送到地表雪和大气界面的机制。溴化物和其他盐类一旦暴露于空气中,就会被光化学活化为活性卤素物质,并在许多大气化学相互作用(例如对流层臭氧耗竭)中发挥作用;通过结合离子色谱(IC)和X射线微荧光的测量(XRF)和X射线微计算机断层扫描(muCT),可以追踪盐类从海洋到盐水通道到地表雪中的运输。 IC用于分析从南极罗斯海收集的吹雪,地表雪和海冰的化学特征。离子比率的差异提供了吹雪在溴活化中的作用的见解。由于盐起源于海洋并通过冰运输,因此准确描述海冰中盐的位置至关重要。 XRF通过提供每种盐的元素图,增加了对微观结构和地层位置的理解。这说明盐主要位于管状通道中和冰晶格的晶界之间。为了更彻底地阐明盐水通过海冰的运输,该信息通过使用muCT测量的盐水网络的定量描述得到了补充。根据这些测量结果,构建了一个拓扑网络,可以分析盐水通道的几何形状和连通性。这种通过海冰传输盐的途径的形状和结构的3-D表征提供了关于海盐如何通过海冰动员并随后在对流层化学反应中起关键作用的详细见解。

著录项

  • 作者

    Lieb-Lappen, Ross.;

  • 作者单位

    Dartmouth College.;

  • 授予单位 Dartmouth College.;
  • 学科 Geophysics.;Applied mathematics.;Atmospheric chemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 198 p.
  • 总页数 198
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号