首页> 外文学位 >Simulation of tubular solid oxide fuel cell behavior for integration into gas turbine cycles.
【24h】

Simulation of tubular solid oxide fuel cell behavior for integration into gas turbine cycles.

机译:用于集成到燃气轮机循环中的管状固体氧化物燃料电池行为的仿真。

获取原文
获取原文并翻译 | 示例

摘要

Models have been developed and validated for the characterization of tubular solid oxide fuel cells (TSOFCs) and a corresponding fuel cell/gas turbine (FC/GT) power cycle. This promising area of technology is expected to attain near-term commercialization (most notably the SiemensWestinghouse SureCellinitiative). There is a need for continued conceptual design research in order for the full potential of these systems to be realized. Parametric studies were performed to delineate the impact of cell stack operating conditions on power generation, cell stack thermal management, independent cell load-following and performance quality. The diverse operating conditions included variations in physical cell design, stack pressure, operating voltage, stoichiometric number and stack fuel utilization. A number of novel findings are reported throughout the thesis. As an example, it has been shown that lowering cell stack fuel utilization has a number of benefits for both the simple TSOFC arrangement and the hybrid TSOFC/ GT scenario.; The cell stack produces more power at lower fuel utilizations, because fuel supply to the stack actually increases. Additionally, fuel depletion issues (i.e., Nernst potential decrease and smaller limiting currents) are not as influential. A gas turbine bottoming engine would also increase in power production, at lower stack fuel utilizations, because a greater amount of fuel would then fire it. Note that power generation expense is measured per unit rating (e.g., {dollar}/kW). Increasing power capacity may then be a means of lowering cost, which is the key obstacle to commercialization. Another cost reduction may stein from the greater contribution of turbomachinery to system power generation, when stack fuel utilization is lowered. FC/GT system efficiency remains stable across a wide domain of cell stack fuel utilizations. This is a result of both the indirect internally reforming (IIR) fuel processor efficiency and Brayton cycle regeneration increasing at lower stack fuel utilizations.; Engineering thermodynamic design principles were also incorporated within the fuel cell analyses. These considerations revealed insights that would not have been realized if the investigation was limited to traditional indices-of-performance. An example is the unaccounted for thermal exergy that leaves the high temperature cells as by-product heat, when utilizing electrochemical efficiencies.
机译:已经开发并验证了用于表征管状固体氧化物燃料电池(TSOFC)和相应的燃料电池/燃气轮机(FC / GT)功率循环的模型。有望在这一有前途的技术领域实现短期商业化(最显着的是SiemensWestinghouse SureCell initiative )。为了使这些系统的全部潜力得以实现,需要进行持续的概念设计研究。进行了参数研究,以描述电池堆工作条件对发电,电池堆热管理,独立电池负荷跟踪和性能质量的影响。不同的工作条件包括物理电池设计,电池组压力,工作电压,化学计量数和电池组燃料利用率的变化。整个论文中报道了许多新颖的发现。 作为一个例子,已经证明 降低 电池堆燃料利用率对于简单的TSOFC布置和混合的TSOFC都有很多好处。 / GT场景。电池堆在较低的燃料利用率下产生更多功率,因为​​向电池堆的燃料供应实际上增加了。另外,燃料耗竭问题(即能斯特电势降低和较小的极限电流)没有那么大的影响。燃气轮机底燃发动机也将以较低的烟囱燃料利用率提高发电量,因为大量的燃料随后会点燃它。注意,发电费用是按每单位额定功率(例如,{美元} / kW)测量的。然后,增加功率容量可能是降低成本的手段,这是商业化的主要障碍。当降低堆燃料的利用率时,另一降低成本的可能来自涡轮机械对系统发电的更大贡献。 FC / GT系统的效率在整个电池堆燃料利用范围内保持稳定。这是由于间接内部重整(IIR)燃料处理器效率和布雷顿循环再生在较低的堆燃料利用率下提高所致。工程热力学设计原理也纳入了燃料电池分析中。这些考虑揭示了如果调查仅限于传统的绩效指标将无法实现的见解。一个例子是,当利用电化学效率时,无法解释的热能余量会把高温电池作为副产品热量排出。

著录项

  • 作者

    Haynes, Comas Lamar.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Mechanical.; Energy.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 244 p.
  • 总页数 244
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号