首页> 外文学位 >Tribochemistry of the decomposition mechanisms of perfluoropolyether lubricants at the head-disk interface of hard disk drives in UHV.
【24h】

Tribochemistry of the decomposition mechanisms of perfluoropolyether lubricants at the head-disk interface of hard disk drives in UHV.

机译:超高压中硬盘驱动器磁头-磁盘界面上全氟聚醚润滑剂分解机理的摩擦化学。

获取原文
获取原文并翻译 | 示例

摘要

The successful operation of a hard disk drive requires the presence of a monolayer Perfluoropolyether (PFPE) film at the head-disk interface. The adhesion, mobility, and physical properties of this lubricant can significantly affect the tribological reliability of the hard-disk drive. The physical properties of this PFPE film, and hence its lubricity, are dictated by the interplay of the intramolecular cohesive interactions between PFPE molecules, and by the adhesive interactions between the PFPE lubricant and the underlying surface.; The mechanical properties of the contacting materials are important parameters to study in order to understand the friction and wear at the head-disk interface. The tribochemistry of the involved contacting surfaces is another important issue.; This dissertation focuses on the study of the tribochemistry at the head-disk interface in a computer hard disk drive. An effort is made to understand the lube decomposition mechanisms and the wear and friction mechanisms at the interface in order to enhance the wear durability.; Drag tests and thermal desorption tests were conducted in an ultra-high vacuum (UHV) tribochamber equipped with a mass spectrometer. The tribochemical tester can be used to monitor the tribochemistry at the head-disk interface in real time along with friction and temperature measurements. An optical surface analysis (OSA) system was also used to observe the lube migration behavior.; The results show that the deposited carbon films on the Al2O 3/TiC sliders' air bearing surfaces can significantly improve the wear durability at the interface. Different lube decomposition mechanisms are found for the coated and uncoated sliders.; The hydrogen evolution from the CHx carbon overcoat initiates lube catalytic decomposition with an Al2O3/TiC slider. But for CNx films, catalytic reactions are prevented due to less hydrogen evolution from the CNx overcoat, resulting in a better wear durability as compared to the CHx films.; The studies also demonstrate that the catalytic degradation process of ZDOL in the presence of Lewis acid occurs most readily at the acetal units (-O-CF2-O-) within the internal backbones of the lubricant.; In addition, this catalytic reaction is also shown to be prevented by using X-1P as an additive in ZDOL, thereby passivating the activity centers (Lewis acid) of Al2O3. The X-1P additive also increases the mobility of PFPE lubricants because X-1P molecules preferably occupy the bonding sites on the carbon surface.; The effect of the lube molecular weight is studied by testing fractionated ZDOL. With higher molecular weight, the poorer mobility causes higher viscosity and higher friction. However, the degradation rate is slower with the higher molecular weight.; Lubricant interaction with the carbon overcoat varies as a function of lubricant thickness. In the sub-monolayer regime, adhesion of the lubricant to the carbon surface is much stronger. When the lubricant thickness is above a monolayer, cohesion among the lube molecules plays a greater role.; The lubricant performance is also a function of the bonded fraction. The wear durability of disks improves with increased mobile lube fraction up to a point because the mobile layers provide a reservoir to constantly replenish the ZDOL displaced in the test track.
机译:硬盘驱动器的成功运行需要在磁头-磁盘接口处存在单层全氟聚醚(PFPE)膜。这种润滑剂的附着力,迁移率和物理特性会严重影响硬盘驱动器的摩擦学可靠性。 PFPE膜的物理性能及其润滑性取决于PFPE分子之间的分子内聚相互作用,以及PFPE润滑剂与下面的表面之间的粘合作用。接触材料的机械性能是要研究的重要参数,以便了解磁头-磁盘界面的摩擦和磨损。所涉及的接触表面的摩擦化学是另一个重要的问题。本文主要研究计算机硬盘驱动器磁头-磁盘界面的摩擦化学。努力了解界面处的润滑油分解机理以及磨损和摩擦机理,以提高耐磨性。阻力测试和热脱附测试在配备质谱仪的超高真空(UHV)摩擦腔中进行。摩擦化学测试仪可用于实时监视磁头-磁盘界面上的摩擦化学以及摩擦和温度测量。光学表面分析(OSA)系统也用于观察润滑油的迁移行为。结果表明,在Al2O 3 / TiC滑块的空气轴承表面上沉积的碳膜可以显着提高界面处的耐磨性。对于涂层和未涂层​​的滑块,发现了不同的润滑油分解机理。从CHx碳外层放出的氢气会通过Al2O3 / TiC滑块引发润滑油催化分解。但是对于CNx膜,由于CNx覆盖层中析出的氢较少,因此可以防止催化反应,与CHx膜相比,具有更好的耐磨性。研究还表明,在路易斯酸存在下ZDOL的催化降解过程最容易发生在润滑剂内部骨架的缩醛单元(-O-CF2-O-)处。另外,还显示出通过在XDOL中使用X-1P作为添加剂来阻止该催化反应,从而钝化了Al2O3的活性中心(路易斯酸)。 X-1P添加剂还增加了PFPE润滑剂的迁移率,因为X-1P分子最好占据碳表面上的键合位置。通过测试分馏的ZDOL,研究了润滑油分子量的影响。分子量越高,流动性越差,粘度越高,摩擦越大。但是,分子量越高,降解速度越慢。与碳外涂层的润滑剂相互作用随润滑剂厚度的变化而变化。在亚单层体系中,润滑剂对碳表面的附着力强得多。当润滑剂厚度大于单层时,润滑油分子之间的内聚作用更大。润滑剂性能也是结合分数的函数。磁盘的耐磨性随着可移动润滑油分数的增加而提高,直到一定程度,因为可移动层提供了一个储存器,可不断补充在测试轨道中移动的ZDOL。

著录项

  • 作者

    Chen, Chao-Yuan.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:48:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号