首页> 外文学位 >Optimizing combustion chamber design for low-temperature diesel combustion.
【24h】

Optimizing combustion chamber design for low-temperature diesel combustion.

机译:优化用于低温柴油燃烧的燃烧室设计。

获取原文
获取原文并翻译 | 示例

摘要

As low-temperature diesel combustion (LTC-D) is gaining interest for the reduction of nitrogen oxide (NOx) and particulate matter (PM) emissions, engine manufacturers will need to consider new engine designs to address the unique mixing and combustion challenges presented by these operating strategies. Currently, approaches to optimize engine design for these operating strategies are unclear.;This research examines the role of combustion-chamber design in LTC-D and attempts to offer a more clearly defined direction for the design of these engines. First, a CFD-based optimization methodology is proposed that functions as a design exploration and analysis tool to examine the influence of combustion chamber design in a heavy-duty diesel engine under LTC-D operating conditions. Second, predictions from the optimization study were examined experimentally in a single-cylinder heavy-duty optical diesel engine. Simultaneous planar laser-induced fluorescence (PLIF) measurements of formaldehyde (H2CO), hydroxyl radicals (OH) and polycyclic aromatic hydrocarbons (PAH) and quantitative fuel-tracer (toluene) measurements under non-combusting conditions provided a detailed examination of the spatial mixing, combustion and pollutant-formation processes under LTC-D operation. Finally, CFD models were examined against the experimental PLIF images, providing validation of the models and assisting in the quantification of the experimental results.;The optimization study identified the importance of three design parameters for optimizing NOx and soot emissions and fuel-consumption: swirl ratio, spray targeting and the piston-bowl diameter; establishing these design parameters as the basis for the optical engine measurements. The PLIF measurements showed that fuel-jet interactions with the piston bowl (jet-bowl) and with neighboring jets (jet-jet) can have a significant influence on the combusting jet structure and subsequent pollutant-formation processes, a complexity that was not fully captured in the optimization study. An improved calibration of the CFD models with the PLIF measurements revealed that soot formation and fuel-rich sources of carbon-monoxide (CO) and unburned hydro-carbons (UHC) emissions are significantly affected by the predicted jet-jet interactions and the rebound of these regions away from the piston-bowl wall during late-cycle combustion. Thus, combustion chamber design can tailor these jet-bowl and jet-jet interactions to minimize PM, UHC and CO emissions for LTC-D operating conditions.
机译:随着低温柴油燃烧(LTC-D)对于减少氮氧化物(NOx)和颗粒物(PM)排放的兴趣日益浓厚,发动机制造商将需要考虑新的发动机设计,以解决由混合燃料和混合燃料带来的独特混合和燃烧挑战这些经营策略。目前,尚不清楚针对这些运行策略优化发动机设计的方法。该研究探讨了燃烧室设计在LTC-D中的作用,并试图为这些发动机的设计提供更明确的方向。首先,提出了一种基于CFD的优化方法,该方法可作为设计探索和分析工具,以检查LTC-D操作条件下重型柴油机中燃烧室设计的影响。其次,在单缸重型光学柴油机中对优化研究的预测进行了实验检验。在不燃烧条件下同时进行平面激光诱导的甲醛(H2CO),羟基(OH)和多环芳烃(PAH)荧光(PLIF)测量以及定量燃料示踪剂(甲苯)测量,对空间混合进行了详细检查,LTC-D操作下的燃烧和污染物形成过程。最后,针对实验PLIF图像检查了CFD模型,从而提供了模型验证并有助于量化实验结果。;优化研究确定了三个设计参数对于优化NOx和烟尘排放以及燃油消耗的重要性:涡流比例,喷雾目标和活塞碗直径;建立这些设计参数作为光学引擎测量的基础。 PLIF测量表明,燃料与活塞碗(射流杯)以及与相邻射流(射流)之间的相互作用会对燃烧喷嘴结构和随后的污染物形成过程产生重大影响,但这种复杂性并未完全消除在优化研究中捕获。通过PLIF测量对CFD模型进行的改进校准显示,碳烟的形成以及一氧化碳(CO)和未燃烧的碳氢化合物(UHC)排放的燃料丰富的来源受到预计的喷气相互作用和回弹的显着影响。在后期循环燃烧中,这些区域远离活塞碗壁。因此,燃烧室设计可以调整这些喷气杯和喷气相互作用,以使LTC-D操作条件下的PM,UHC和CO排放最小化。

著录项

  • 作者

    Genzale, Caroline L.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Engineering Automotive.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 254 p.
  • 总页数 254
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 自动化技术及设备;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号