首页> 外文学位 >Scanning probe microscopy studies of the highly strained epitaxy of indium arsenide on gallium arsenide(001) and scanning probe based imaging and manipulation of nanoscale three-dimensional objects.
【24h】

Scanning probe microscopy studies of the highly strained epitaxy of indium arsenide on gallium arsenide(001) and scanning probe based imaging and manipulation of nanoscale three-dimensional objects.

机译:砷化镓(001)上砷化铟高度应变外延的扫描探针显微镜研究,以及基于扫描探针的纳米级三维物体的成像和操作。

获取原文
获取原文并翻译 | 示例

摘要

This Dissertation contributes to three mainstream areas of current research: (a) the nature of two-dimensional (2D) to three-dimensional (3D) morphology change in the highly strained epitaxy of InAs on GaAs(001) and the formation and evolution of the InAs nanoscale 3D islands, (b) the understanding of scanning tunneling microscope (STM), and contact- and noncontact atomic force microscope (C-AFM and NC-AFM) imaging of nanoscale 3D islands/objects, and (c) the direct manipulation of nanoscale 3D objects in air, and at room temperature, using the NC-AFM.; A remarkable re-entrant behavior of the 2D → 3D morphology transition in InAs/GaAs(001) is found in which small quasi-3D (Q3D) clusters of heights 2–4 monolayers (ML) act as a kinetic pathway towards InAs 3D (>4 ML high) island formation. The 2D → 3D transition is gradual, with a varying material transfer between the 2D and 3D features. The 3D islands exhibit a tendency towards lateral size (and to some extent, volume) equalization with increasing InAs delivery, &thetas;. The combined STM/AFM results point to models for 3D island formation (from small Q3D clusters) and for 3D island evolution, that reveal the importance of various kinetic processes. Growth condition dependence of the InAs 3D morphology reveals the significance of kinetic processes such as arsenic incorporation and interplanar and intraplanar In migration.; Some similarities and significant differences are found between in-situ UHV C-AFM, STM, and NC-AFM images of InAs nanoscale 3D islands. In particular, NC-AFM images show a remarkable contrast-reversal of the images of 3D nanofeatures. This behavior is partly attributed to a feedback instability related to the tip-sample interaction force gradient curve, based on our simple model of NC-AFM imaging. We find that the differences in the STM/C-AFM/NC-AFM images can be reconciled with the corresponding mechanism(s) of operation of the microscopes.; Finally, we have developed protocols for nanomanipulation using the NC-AFM and demonstrate the first direct and controlled manipulation of nanoparticles (of gold) as small as 5 nm in diameter, in air and at room temperature using the NC-AFM. We also show how simple experiments based on variation of the manipulation window can provide much information on the manipulation mechanism and tip-sample-substrate interactions.
机译:本论文为当前研究的三个主流领域做出了贡献:(a)InAs在高强度外延砷化镓(001)上的二维(2D)到三维(3D)形态学的本质以及GaAs(001)的形成和演化InAs纳米级3D岛,(b)了解扫描隧道显微镜(STM),以及纳米级3D岛/物体的接触和非接触原子力显微镜(C-AFM和NC-AFM)成像,以及(c)直接使用NC-AFM操纵空气中和室温下的纳米3D对象。发现InAs / GaAs(001)中2D→3D形态转变的显着折返行为,其中高度为2-4单层(ML)的小的准3D(Q3D)簇充当通向InAs 3D的动力学路径( > 4 ML高)岛形成。 2D→3D过渡是渐进的,在2D和3D要素之间的材质传递有所不同。 3D岛显示出随着InAs输送量θ的增加而趋向于横向尺寸(在某种程度上是体积)均等化的趋势。组合的STM / AFM结果指向3D岛形成模型(来自小型Q3D簇)和3D岛演化模型,这些模型揭示了各种动力学过程的重要性。 InAs 3D形态的生长条件依赖性揭示了动力学过程的重要性,例如砷的掺入以及平面内和平面内In迁移。 InAs纳米级3D岛的原位 UHV C-AFM,STM和NC-AFM图像之间存在一些相似性和显着差异。特别是,NC-AFM图像显示了3D纳米功能图像的显着对比度反转。根据我们的NC-AFM成像简单模型,此行为部分归因于与针尖样本相互作用力梯度曲线有关的反馈不稳定。我们发现,STM / C-AFM / NC-AFM图像中的差异可以与显微镜的相应操作机制相一致。最后,我们已经开发了使用NC-AFM进行纳米操作的方案,并展示了使用NC-AFM在空气和室温下首次直接和受控地处理直径为5 nm的纳米颗粒(金)。我们还展示了基于操纵窗口变化的简单实验如何能够提供有关操纵机理和尖端-样品-底物相互作用的大量信息。

著录项

  • 作者

    Ramachandran, T. R.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Materials Science.; Physics Condensed Matter.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 383 p.
  • 总页数 383
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号