首页> 外文学位 >Deployment and organization strategies for sampling-interpolation sensor networks.
【24h】

Deployment and organization strategies for sampling-interpolation sensor networks.

机译:采样内插传感器网络的部署和组织策略。

获取原文
获取原文并翻译 | 示例

摘要

Networks of wireless micro-sensors are envisioned to be the prominent choice for on-site monitoring of physical locations. A wide range of practical applications has been conceived and studied in recent years for this engineering regime: habitat and wildlife monitoring, smart buildings and disaster response are only a few representative examples. However, there are also unique challenges faced by the sensor network paradigm: energy resources for individual sensors are limited. Efficient approaches are necessary to ensure prolonged autonomous operation of the network, while still providing quality of service to the user application at all times.;Here, we focus on situations where the wireless sensor network functions as a distributed sampling system and sensors periodically sample a physical phenomenon of interest, e.g. temperature. Samples are then used to construct a spatially continuous estimate of the phenomenon through interpolation, over time.;We examine two distinct classes of practical sampling-interpolation scenarios. In the first one we are given a large ensemble of sensors which have already been deployed. The goal is then to reactively devise a maximum number of disjoint subsets of sensors, such that data from each of them can individually support the desired interpolation accuracy. Energy efficiency is achieved by reducing the amount of data packets communicated across the network. In the second one we have to proactively manage deployment of the network from scratch. The objective is then to use a minimum number of sensors so as to again support the desired interpolation accuracy. Cost effectiveness is achieved here by using a smaller network to begin with.;To tackle the challenges of these scenarios we utilize the Hilbert space of second order random variables and define interpolation quality on the basis of Mean Squared Error (MSE). Times series of values measured at individual sensors can provide finite dimensional approximations of these random variables and facilitate algebraic manipulations within the Hilbert space framework. The associated covariance matrix succinctly captures sensor correlations and enables novel solutions to the aforementioned problems. Through extensive simulations on synthetic and real sensor network data our proposed solutions are shown to possess strong advantages compared to other approaches.
机译:可以预见,无线微传感器网络将成为物理位置现场监控的主要选择。近年来,已经针对该工程制度构想并研究了广泛的实际应用:生境和野生动植物监测,智能建筑和灾难响应只是几个代表性的例子。但是,传感器网络范式还面临着独特的挑战:单个传感器的能源有限。需要有效的方法来确保网络的长时间自治运行,同时仍始终为用户应用程序提供服务质量。在此,我们重点研究无线传感器网络用作分布式采样系统并且传感器定期对无线传感器网络进行采样的情况。感兴趣的物理现象,例如温度。然后使用样本通过时间插值来构造现象的空间连续估计。我们研究了两类不同的实际采样-插值方案。在第一个中,我们获得了已经部署的大量传感器。然后,目标是反应性地设计传感器的不相交子集的最大数量,以使来自每个传感器的不连续子集的数据可以分别支持所需的插值精度。通过减少跨网络通信的数据包数量来实现能源效率。在第二篇文章中,我们必须从头开始主动管理网络的部署。然后,目标是使用最少数量的传感器,以便再次支持所需的插值精度。首先通过使用较小的网络来实现成本效益。为了解决这些情况的挑战,我们利用了二阶随机变量的希尔伯特空间,并基于均方误差(MSE)定义了插值质量。在各个传感器上测量的时间序列值可以提供这些随机变量的有限维近似值,并有助于在希尔伯特空间框架内进行代数运算。相关的协方差矩阵简洁地捕获了传感器的相关性,并为上述问题提供了新颖的解决方案。通过对合成和真实传感器网络数据进行广泛的仿真,与其他方法相比,我们提出的解决方案具有强大的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号