首页> 外文学位 >Numerical modeling and experimental investigation in through-hole electrodeposition.
【24h】

Numerical modeling and experimental investigation in through-hole electrodeposition.

机译:通孔电沉积的数值模拟和实验研究。

获取原文
获取原文并翻译 | 示例

摘要

The formulations of the traditional bulk-diffusion model and a refined, field model are presented in Chapter 1. In the bulk-diffusion model, the electrolyte is separated into two regions. They are the thin-diffusion layer region where mass transport occurs and the bulk region where no concentration gradient is assumed to exist. The field model considers the effect of ionic migration as well as mass transport in the whole electrolyte. The current distribution profiles from both models are compared in a typical industrial plating solution.; Chapter 2 provides a description of the experimental apparatus used to validate the field model for various levels of a supporting electrolyte. The average discrepancy in current distribution between the field model and the experimental results is less than 1 percent.; Chapter 3 deals with an investigation on the validity of the bulk-diffusion model in small through-holes. A numerical study is performed on the placement of the boundary layer and its effect on the current distribution. It is shown that when the Peclet number is greater than 100, the bulk-diffusion model is generally valid.; Chapter 4 discusses the fluid mechanics of a through-hole. The problem was solved by using the method of streamlines and vorticities. Streamlines, vorticity contours, axial velocity profiles, and radial velocity profiles are shown at different Reynolds numbers and geometry of the through-hole.; Chapter 5 presents the current distribution under mass-transfer controlled conditions on the new through-hole model. Very fine meshes must be placed on the front and back faces of the through-hole to compute accurately the flux in these regions. Results show that the major fraction of the current goes onto the front face and inside the through-hole while a minor amount occurs on the back face.; Chapter 6 presents the current distribution and surface concentration in the new through-hole model for cases below the limiting current. At low overpotentials, secondary-like current distributions occur with the major fraction of the current nearly evenly distributed to the front and back faces while a minor portion flows to the inside of the through-hole. The electric field is highest on the front and back faces since because of their proximity to the counter electrodes. At high applied potentials, the back face eventually becomes limited by mass transport.; Chapter 7 presents an experimental investigation on the current distribution in all regions of the through-hole in the presence of various levels of a supporting electrolyte. (Abstract shortened by UMI.)
机译:第1章介绍了传统的体扩散模型和精细的现场模型的公式。在体扩散模型中,电解质分为两个区域。它们是发生质量传输的薄扩散层区域和假定不存在浓度梯度的主体区域。场模型考虑了整个电解质中离子迁移以及质量迁移的影响。在典型的工业电镀解决方案中比较了两种模型的电流分布曲线。第2章介绍了用于验证各种支持电解质水平模型的实验装置。现场模型与实验结果之间电流分布的平均差异小于1%。第三章研究了小通孔中体扩散模型的有效性。对边界层的放置及其对电流分布的影响进行了数值研究。结果表明,当Peclet数大于100时,体扩散模型通常是有效的。第4章讨论通孔的流体力学。通过使用流线和涡旋的方法解决了这个问题。在不同的雷诺数和通孔几何形状下显示了流线,涡度轮廓,轴向速度分布图和径向速度分布图。第5章介绍了在新的通孔模型下,在传质控制下的电流分布。必须在通孔的正面和背面放置非常细的网格,以准确计算这些区域的通量。结果表明,电流的大部分流向了正面和通孔内部,而少量流向了背面。第6章介绍了在低于极限电流的情况下新通孔模型中的电流分布和表面浓度。在低电势下,会出现次级电流分布,其中大部分电流几乎均匀地分布在正面和背面,而一小部分流到通孔内部。由于正面和背面靠近反电极,因此电场最高。在高施加电势下,背面最终会受到传质的限制。第7章介绍了在存在各种含量的支持电解质的情况下通孔所有区域中电流分布的实验研究。 (摘要由UMI缩短。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号