首页> 外文学位 >Design of engineered cementitious composites for ductile seismic resistant elements.
【24h】

Design of engineered cementitious composites for ductile seismic resistant elements.

机译:用于延性抗震元件的工程胶结复合材料的设计。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on designing Engineered Cementitious Composite (ECC) to achieve high performance seismic resistant elements. To attain this goal, three major tasks have been accomplished.;Task 1 aims at achieving new ECCs involving low cost fiber, which often involve fiber rupture in crack bridging, thus named as "Fiber Rupture Type ECC". Achieving the new ECC requires a new practical and comprehensive composite design theory. For this theory, single fiber behavior was first investigated. Specifically, fiber rupture in composite and chemical bond in fiber/matrix interface were experimentally examined and mathematically modeled. Then this model for single fiber behavior was implemented into a proposed bridging law, a theoretical model for relationship between fiber bridging stress of composite and Crack Opening Displacement (COD). This new bridging law was finally employed to establish a new composite design theory.;Task 2 was initiated to facilitate structural interpretation of ECC's material behavior investigated in Task 1. For this purpose, uniaxial tensile behavior, one of the most important ECC's properties, was theoretically characterized with stress-strain relation from micromechanics view point. As a result, a theory is proposed to express ECC's tensile stress-strain relation in terms of micromechanics parameters of composites, such as bond strengths.;Task 3 primarily demonstrates an integrated design scheme for ductile seismic elements that covers from micromechanics in single fiber level to structural design tool, such as with non-linear FEM analysis. The significance of this design scheme is that the influences of ECC's microstructure on element's structural performance is quantitatively captured. This means that a powerful tool is obtained for tailoring constitutive micromechanics parameters in order to maximize structural performance of elements. While the tool is still preliminary, completing this tool in future studies will enable one to optimally exploit the performance of constitutive materials, thus resulting in maximum structural safety with reasonable cost.
机译:本文致力于设计高性能水泥基复合材料(ECC),以实现高性能的抗震构件。为了实现该目标,已经完成了三个主要任务。任务1旨在实现涉及低成本光纤的新ECC,这些低成本ECC通常在裂纹桥接中涉及光纤断裂,因此被称为“光纤破裂型ECC”。实现新的ECC需要一种新的实用而全面的复合设计理论。对于该理论,首先研究了单纤维行为。具体而言,对复合材料中的纤维断裂和纤维/基体界面中的化学键进行了实验检查并进行了数学建模。然后将该单纤维行为模型实现为拟议的桥接定律,这是复合材料纤维桥接应力与裂纹开口位移(COD)之间关系的理论模型。最终,这一新的桥接法则被用于建立新的复合设计理论。;任务2的发起是为了促进对任务1中研究的ECC材料性能的结构解释。为此,单轴拉伸性能是ECC最重要的特性之一。从微观力学的角度看,理论上具有应力-应变关系。因此,提出了一种理论来表达ECC的拉伸应力-应变关系,涉及复合材料的微机械参数,例如粘结强度。;任务3主要演示了一种延性地震单元的集成设计方案,该方案涵盖了单纤维级的微力学到结构设计工具,例如进行非线性有限元分析。该设计方案的意义在于,可以定量捕获ECC的微观结构对元件结构性能的影响。这意味着获得了一种强大的工具,用于调整本构微力学参数,以使元件的结构性能最大化。虽然该工具仍处于初步阶段,但在将来的研究中完成该工具将使人们能够最佳地利用本构材料的性能,从而以合理的成本获得最大的结构安全性。

著录项

  • 作者

    Kanda, Tetsushi.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Civil.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 328 p.
  • 总页数 328
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号