首页> 外文学位 >Deriving atmospheric density estimates using satellite precision orbit ephemerides.
【24h】

Deriving atmospheric density estimates using satellite precision orbit ephemerides.

机译:使用卫星精密轨道星历表得出大气密度估算值。

获取原文
获取原文并翻译 | 示例

摘要

The atmospheric models in use today are incapable of properly modeling all of the density variations in the Earth's upper atmosphere. This research utilized precision orbit ephemerides (POE) in an orbit determination process to generate improved atmospheric density estimates. Based on their correlation to the accelerometer density, the resulting POE density estimates were demonstrated to be an improvement over existing atmospheric models regardless of solar and geomagnetic activity levels. Also, the POE density estimates were somewhat better in terms of their correlation with the accelerometer density than the improved density estimates obtained by the High Accuracy Satellite Drag Model (HASDM). The results showed that the POE density estimates were obtained with the desired accuracy for a +/-10% variation in the nominal ballistic coefficient used to initialize the orbit determination process. Also, the length of the fit span showed little influence on the accuracy of the POE density estimates. Overlap regions of POE density estimates demonstrated a method of determining the consistency of the solutions. Finally, Gravity Recovery and Climate Experiment (GRACE) POE density estimates showed consistent results with the Challenging Mini-Satellite Payload (CHAMP) POE density estimates.;Modeling the atmospheric density has always been and continues to be one of the greatest uncertainties related to the dynamics of satellites in low Earth orbit. The unmodeled density variations directly influence a satellite's motion thereby causing difficulty in determining the satellite's orbit resulting in possibly large errors in orbit prediction. Many factors influence the variations observed in the Earth's atmospheric density with many of the processes responsible for these variations not modeled at all or not modeled completely. The Earth's atmospheric density is affected to the greatest extent by direct heating from the Sun and through the influence of geomagnetic storms. Deficiencies in existing atmospheric models require corrections be made to improve satellite orbit determination and prediction.;This research used precision orbit ephemerides in an orbit determination process to generate density corrections to existing atmospheric models, including Jacchia 1971, Jacchia-Roberts, CIRA-1972, MSISE-1990, and NRLMSISE-2000. This work examined dates consisting of days from every year ranging from 2001 to 2007 covering the complete range of solar and geomagnetic activity. The density and ballistic coefficient correlated half-lives were considered and are a user controlled parameter in the orbit determination process affecting the way the unmodeled or inaccurately modeled drag forces influence a satellite's motion. The values primarily used in this work for both the density and ballistic coefficient correlated half-lives were 1.8, 18, and 180 minutes. The POE density estimates were evaluated by examining the position and velocity consistency test graphs, residuals, and most importantly the cross correlation coefficients from comparison with accelerometer density.;The POE density estimates were demonstrated to have significant improvements over existing atmospheric models. Also, the POE density estimates were found to have comparable and often superior results compared with the HASDM density. For the overall summary, the best choice was the CIRA-1972 baseline model with a density and ballistic coefficient correlated half-life of 18 and 1.8 minutes, respectively. The best choice refers to the baseline atmospheric model and half-life combination used to obtain the POE density estimate having the best correlation with the accelerometer density.;During periods of low solar activity, the best choice was the CIRA-1972 baseline model with a density and ballistic coefficient correlated half-life of 180 and 18 minutes, respectively. When considering days with moderate solar activity, using a density correlated half-life of 180 minutes and a ballistic coefficient correlated half-life of 1.8 minutes for the Jacchia 1971 baseline model was the best combination or choice. During periods of elevated and high solar activity, the best combination was the CIRA-1972 baseline atmospheric model with a density and ballistic coefficient correlated half-life of 18 and 1.8 minutes, respectively. When considering times of quiet geomagnetic activity, the best choice was the Jacchia 1971 baseline model with a density and ballistic coefficient correlated half-life of 1.8 and 18 minutes, respectively. During times of moderate and active geomagnetic activity, the CIRA-1972 baseline atmospheric model with a density correlated half-life of 18 minutes and a ballistic coefficient correlated half-life of 1.8 minutes was the best combination. The conclusions found for the overall and binned results did not hold true for every solution. However, using CIRA-1972 as the baseline atmospheric model with a density and ballistic coefficient correlated half-life of 18 and 1.8 minutes, respectively, is the recommended combination for generating the most accurate POE density estimates.;Variations of +/-10% in the nominal ballistic coefficient used to initialize the orbit determination process provided sufficiently accurate POE density estimates as compared with the accelerometer density. The extent of this sensitivity remains unclear and requires additional study. The dependence of the POE density estimate on the solution fit span length was shown to be very low. Six hour fit span lengths considered to be the worst case scenario were shown to provide good agreement with the accelerometer density and POE density estimates with longer fit span lengths. Also, regions of overlap between successive solutions demonstrated good agreement between the individual POE density estimates indicating consistent solutions were obtained from the orbit determination process. The GRACE-A POE density estimates demonstrated consistent results compared with the CHAMP POE density estimates. Additional research is required that utilizes GRACE-A POE data to generate POE density estimates to confirm the CHAMP POE density estimate results.
机译:当今使用的大气模型无法正确模拟地球高层大气中的所有密度变化。这项研究在轨道确定过程中利用了精密轨道星历表(POE)来生成改进的大气密度估算值。基于它们与加速度计密度的相关性,无论太阳和地磁活动水平如何,所得的POE密度估计值都比现有的大气模型有所改进。同样,就其与加速度计密度的相关性而言,POE密度估算要比通过高精度卫星阻力模型(HASDM)获得的改进的密度估算更好。结果表明,对于用于初始化轨道确定过程的名义弹道系数+/- 10%的变化,POE密度估计值具有所需的精度。同样,拟合跨度的长度对POE密度估计的准确性几乎没有影响。 POE密度估计值的重叠区域展示了一种确定溶液一致性的方法。最后,重力恢复和气候实验(GRACE)的POE密度估算结果与具有挑战性的微型卫星有效载荷(CHAMP)的POE密度估算结果相一致;对大气密度进行建模一直是并将继续是与气候变化有关的最大不确定性之一。低地球轨道上的卫星动力学。未建模的密度变化直接影响卫星的运动,从而导致难以确定卫星的轨道,从而导致轨道预测中可能出现较大的误差。许多因素影响着地球大气密度中观测到的变化,而造成这些变化的许多过程根本没有被建模或没有被完全建模。太阳的直接加热和地磁风暴的影响最大程度地影响了地球的大气密度。现有大气模型的缺陷需要进行校正以改善卫星轨道的确定和预测。该研究在轨道确定过程中使用精密轨道星历来对现有大气模型进行密度校正,包括Jacchia 1971,Jacchia-Roberts,CIRA-1972, MSISE-1990和NRLMSISE-2000。这项工作检查的日期包括从2001年到2007年每年的几天,涵盖太阳和地磁活动的全部范围。考虑了密度和弹道系数相关的半衰期,它们是在轨道确定过程中由用户控制的参数,影响未建模或不正确建模的拖曳力影响卫星运动的方式。在这项工作中,密度和弹道系数相关的半衰期主要使用的值是1.8分钟,18分钟和180分钟。通过检查位置和速度一致性测试图,残差以及最重要的是与加速度计密度进行比较得到的互相关系数来评估POE密度估计值。证明POE密度估计值与现有大气模型相比有显着改进。而且,发现POE密度估算值与HASDM密度相比具有可比的且通常是更好的结果。对于总体总结,最佳选择是CIRA-1972基线模型,其密度和弹道系数相关的半衰期分别为18分钟和1.8分钟。最佳选择是指用于获得与加速度计密度具有最佳相关性的POE密度估计值的基线大气模型和半衰期组合。在太阳活动强度较低的时期,最佳选择是CIRA-1972基线模型,其中密度和弹道系数分别与180分钟和18分钟的半衰期相关。当考虑日活动量适中的日子时,Jacchia 1971基准模型使用密度相关的半衰期为180分钟,弹道系数相关的半衰期为1.8分钟是最佳组合或选择。在太阳活动增强和高强度期间,最佳组合是CIRA-1972基准大气模型,其密度和弹道系数相关的半衰期分别为18分钟和1.8分钟。考虑静磁活动的时间时,最佳选择是Jacchia 1971年基线模型,其密度和弹道系数相关的半衰期分别为1.8分钟和18分钟。在适度和活跃的地磁活动期间,CIRA-1972基准大气模型是最佳组合,密度相关的半衰期为18分钟,弹道系数相关的半衰期为1.8分钟。并非所有解决方案都适用于总体和装箱结果的结论。然而建议使用CIRA-1972作为基准大气模型,其密度和弹道系数相关的半衰期分别为18分钟和1.8分钟,是产生最准确的POE密度估算值的推荐组合。变化+/- 10%与加速度计密度相比,用于初始化轨道确定过程的名义弹道系数提供了足够准确的POE密度估计。这种敏感性的程度尚不清楚,需要进一步研究。 POE密度估计值对解决方案拟合跨度长度的依赖性非常低。六个小时的拟合跨度长度被认为是最坏的情况,与更长的拟合跨度长度的加速度计密度和POE密度估计值可以很好地吻合。同样,连续解之间的重叠区域在各个POE密度估计值之间显示出良好的一致性,表明从轨道确定过程中获得了一致的解。与CHAMP POE密度估算值相比,GRACE-A POE密度估算值显示出一致的结果。需要进行其他研究,利用GRACE-A POE数据生成POE密度估算值,以确认CHAMP POE密度估算结果。

著录项

  • 作者

    Hiatt, Andrew Timothy.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Engineering Aerospace.;Atmospheric Sciences.
  • 学位 M.S.
  • 年度 2009
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号