首页> 外文学位 >Control of stratified systems with robotic applications.
【24h】

Control of stratified systems with robotic applications.

机译:使用机器人应用程序控制分层系统。

获取原文
获取原文并翻译 | 示例

摘要

Many interesting and important control systems evolve on stratified configuration spaces. Roughly speaking, a configuration manifold is called "stratified" if it contains subspaces (submanifolds) upon which the system had different equations of motion. Robotic systems, in particular, are of this nature. For example, a legged robot has discontinuous equations of motion near points in the configuration space where each of its "feet" comes into contact with the ground. In such a case, when the system moves from one submanifold to another, the equations of motion change in a non-smooth, or even discontinuous manner. In such cases, traditional nonlinear control methodologies are inapplicable because they generally rely upon some form of differentiation. Yet, it is precisely the discontinuous nature of such systems that is often their most important characteristic.This dissertation presents methods which consider the intrinsic physical geometric structure present in such problems to address nonlinear controllability and motion planning for stratified systems. For both problems, by exploiting this geometric structure of stratified systems, we can extend standard nonlinear control results and methodologies to the stratified case. A related problem addressed by this dissertation is that of controllability of systems where some control inputs are constrained to be non-negative. This problem arises in stratified systems which arise by way of physical contact because the normal force between contacting systems must be nonnegative. For all the results, a basic goal is to generate results which are general. For example, for robotics applications, these results are independent of a particular robot's number of legs, fingers or morphology.
机译:许多有趣而重要的控制系统都在分层配置空间上发展。粗略地说,如果配置流形包含系统具有不同运动方程的子空间(子流形),则它称为“分层”。机器人系统尤其具有这种性质。例如,有腿机器人在配置空间中每个“脚”与地面接触的点附近具有不连续的运动方程。在这种情况下,当系统从一个子流形移动到另一个子流形时,运动方程将以非平滑甚至不连续的方式变化。在这种情况下,传统的非线性控制方法是不适用的,因为它们通常依赖于某种形式的微分。然而,正是这种系统的不连续性往往是它们最重要的特征。本文提出了考虑存在于此类问题中的固有物理几何结构的方法,以解决分层系统的非线性可控性和运动计划。对于这两个问题,通过利用分层系统的这种几何结构,我们可以将标准的非线性控制结果和方法扩展到分层情况。本文解决的一个相关问题是系统的可控性,其中某些控制输入被约束为非负。该问题在通过物理接触的分层系统中出现,因为接触系统之间的法向力必须为非负值。对于所有结果,基本目标是生成通用结果。例如,对于机器人应用,这些结果与特定机器人的腿,手指或形态无关。

著录项

  • 作者

    Goodwine, John William, Jr.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 148 p.
  • 总页数 148
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号