首页> 外文学位 >New quantum cascade laser architectures: II-VI quantum cascade emitters, high k-space lasing, and short injectors.
【24h】

New quantum cascade laser architectures: II-VI quantum cascade emitters, high k-space lasing, and short injectors.

机译:新的量子级联激光器架构:II-VI量子级联发射器,高k空间激射和短注入器。

获取原文
获取原文并翻译 | 示例

摘要

Quantum cascade (QC) lasers are today's most capable mid-infrared light sources. With up to watt-level room temperature emission over a broad swath of mid-infrared wavelengths, these tiny semiconductor devices enable a variety of applications and technologies such as ultra-sensitive systems for detecting trace molecules in the vapor phase. The foundation of a QC structure lies in alternating hundreds of wide- and narrow-bandgap semiconductor layers to form a coupled quantum well system. In this way, the laws of quantum mechanics are used to precisely engineer electron transport and create artificial optical transitions. The result is a material with capabilities not found in nature, a truly "designer" material.;As a central theme in this thesis, we stress the remarkable flexibility of the quantum cascade---the ability to highly tailor device structure for creative design concepts. The QC idea, in fact, relies on no particular material system for its implementation. While all QC lasers to date have been fabricated from III--V materials such as InGaAs/AlInAs, I detail our preliminary work on ZnCdSe/ZnCdMgSe---a II--VI materials system---where we have demonstrated electroluminescence.;We then further discuss how the inherent QC flexibility can be exploited for new devices that extend QC performance and capabilities. In this regard, we offer the examples of excited state transitions and short injectors. Excited state transitions are an avenue to enhancing optical gain, which is especially needed for longer-wavelength devices where optical losses hinder performance. Likewise, shortening the QC injector length over a conventional QC structure has powerful implications for threshold current, output power, and wall-plug efficiency. In both cases, novel physical effects are discovered. Pumping electrons into highly excited states led to the discovery of high k-space lasing from highly non-equilibrium electron distributions. Shortening QC injector regions allowed us to observe "classical" superlattice effects such as negative differential resistance and pulse instabilities. While interesting from a scientific perspective, these unique phenomena shed new insight on internal QC laser processes and may themselves lead to further improvements in device performance.
机译:量子级联(QC)激光器是当今功能最强大的中红外光源。这些纤巧的半导体器件可在宽范围的中红外波长范围内提供高达瓦特级的室温辐射,因此可实现多种应用和技术,例如用于检测气相中痕量分子的超灵敏系统。 QC结构的基础在于交替使用数百个宽带隙和窄带隙半导体层,以形成耦合量子阱系统。通过这种方式,量子力学定律被用来精确地设计电子传输并创造出人造的光学跃迁。结果是一种具有自然界中未发现的功能的材料,一种真正的“设计者”材料。;作为本文的中心主题,我们强调了量子级联的非凡灵活性-高度定制器件结构以进行创意设计的能力概念。实际上,质量控制思想不依赖于任何特定的材料系统来实施。迄今为止,所有的QC激光器都是由III-V材料(例如InGaAs / AlInAs)制成的,我详细介绍了我们在ZnCdSe / ZnCdMgSe-a-II-VI材料系统上的初步工作。然后,我们进一步讨论如何为扩展QC性能和功能的新设备开发固有的QC灵活性。在这方面,我们提供了激发态转变和短喷射器的示例。激发态跃迁是增强光学增益的途径,这对于较长波长的设备(光学损失会影响性能)尤其需要。同样,在传统的QC结构上缩短QC注入器的长度对于阈值电流,输出功率和壁塞效率具有重要意义。在这两种情况下,都发现了新颖的物理效果。将电子泵浦到高激发态导致了从高度非平衡电子分布中发现高k空间激光。缩短QC注入器区域使我们能够观察到“经典”超晶格效应,例如负微分电阻和脉冲不稳定性。尽管从科学的角度来看很有趣,但是这些独特的现象为内部QC激光工艺提供了新的见识,并且它们本身可能会导致器件性能的进一步提高。

著录项

  • 作者

    Franz, Kale J.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 219 p.
  • 总页数 219
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号