首页> 外文学位 >Maximally flat transmission line quarter-wavelength-coupled filters and quarter-wavelength transformer impedance matching networks.
【24h】

Maximally flat transmission line quarter-wavelength-coupled filters and quarter-wavelength transformer impedance matching networks.

机译:最大平坦的传输线四分之一波长耦合滤波器和四分之一波长变压器阻抗匹配网络。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents network synthesis techniques for designing quarter-wave-length-coupled microwave transmission line filter networks. A network is comprised of individual resonators. Each resonator section has a specific response which can be described in terms of the frequency selectivity or Q of the resonator. The goal of network synthesis is to combine resonators with different responses, and thus different Q values, to form a desirable overall network response with a network total Q.; This dissertation is concerned with achieving a particular response called the maximally-flat response, which occurs when the derivatives of the response with respect to frequency are zero at the resonant or central frequency of the network. For quarter-wavelength-coupled transmission line networks this condition is met by setting all of the lower-order terms of the transducer loss function to zero. The highest-order term of the transducer loss function determines the total Q of the network. Setting all lower-order terms to zero yields the parameters, e.g. impedance values, of the individual resonators necessary to achieve a maximally-flat response for the network. By describing the individual resonators in terms of their Q values, any arbitrary resonator can be used in the network as long as it resonates at the frequency of the network with the given value of Q.; Each chapter of this dissertation is a self-contained paper. After an introductory chapter, quarter-wavelength-coupled filters with uniform coupling lines are addressed. First, an approach is presented for creating maximally-flat quarter-wavelength-coupled filters using quarter-wavelength shorted-stub resonators. This approach provides a more accurate value for total Q than current approaches and creates a truly maximally-flat response. Next, this approach is generalized to use arbitrary resonators by describing quarter-wave shorted-stub resonators in terms of their value for Q. This approach is referred to as the Q Distribution Method. A chapter is devoted to providing examples using a variety of different parallel resonators. In addition, an approximate closed-form expression for the Q distribution is derived using the binomial transformer equation.; The Q Distribution Method may also be applied to designing quarter-wave transformer impedance matching networks. Unlike current techniques, it yields a value for the total Q of the impedance matching network, makes it possible to create useful nonmonotonic impedance matching network solutions which have a degraded maximally-flat form. Finally, parallel resonators are added to quarter-wave transformer impedance matching networks to improve the performance of the impedance matching network in three ways. First, adding parallel resonators improves the poor stopband rejection from which quarter-wave transformer impedance matching networks suffer. Second, for a given load-to-source mismatch, adding more than one parallel resonator creates numerous realizable networks, i.e. values of total Q. Third, using parallel resonators requires one less quarter-wave transformer to achieve the same order of response.; An appendix describes a method for finding the Q of a resonator using S parameter data. A second appendix discusses a new transmission line resonant structure, a capacitively-loaded, half-wavelength, tapped-stub resonator. With this resonator, both the Q and resonant frequency can be set independently, and thus a tracking filter can be constructed which has a fixed Q. (Abstract shortened by UMI.)
机译:本文提出了用于设计四分之一波长耦合微波传输线滤波器网​​络的网络综合技术。网络由各个谐振器组成。每个谐振器部分都有一个特定的响应,可以用谐振器的频率选择性或Q来描述。网络合成的目的是将具有不同响应,从而具有不同Q值的谐振器组合在一起,以形成具有网络总Q的理想总体网络响应。本文涉及获得称为最大平坦响应的特定响应,该响应在网络的谐振频率或中心频率处相对于频率的导数为零时发生。对于四分之一波长耦合的传输线网络,通过将换能器损耗函数的所有低阶项设置为零来满足此条件。换能器损耗函数的最高阶项决定了网络的总Q。将所有低阶项设置为零会产生参数,例如实现网络最大平坦响应所需的各个谐振器的阻抗值。通过根据各个谐振器的Q值描述各个谐振器,只要该谐振器以给定Q值在网络频率上谐振,就可以在网络中使用。论文的每一章都是独立的论文。在介绍性章节之后,介绍了具有均匀耦合线的四分之一波长耦合滤波器。首先,提出了一种使用四分之一波长短截线谐振器创建最大平坦的四分之一波长耦合滤波器的方法。与当前方法相比,此方法可为总Q提供更准确的值,并产生真正最大平坦的响应。接下来,通过根据四分之一波长短截线谐振器的Q值来描述该方法,将其推广到使用任意谐振器。该方法称为Q分布方法。一章致力于提供使用各种不同的并联谐振器的示例。另外,使用二项式变压器方程得出Q分布的近似闭合形式表达式。 Q分布方法也可用于设计四分之一波长变压器阻抗匹配网络。与当前的技术不同,它可以得出阻抗匹配网络的总Q值,从而可以创建有用的非单调阻抗匹配网络解决方案,这些解决方案的最大平坦度会下降。最后,将并联谐振器添加到四分之一波长变压器阻抗匹配网络,以三种方式改善阻抗匹配网络的性能。首先,增加并联谐振器可改善阻带抑制性能,因为四分之一波变压器阻抗匹配网络会遭受该抑制。第二,对于给定的负载-源失配,增加一个以上的并联谐振器会创建许多可实现的网络,即总Q值。第三,使用并联谐振器需要少一个四分之一波长的变压器来实现相同的响应阶数。附录描述了一种使用S参数数据找到谐振器Q的方法。第二个附录讨论了一种新的传输线谐振结构,一种电容性负载的半波长抽头截头谐振器。使用该谐振器,可以分别设置Q和谐振频率,因此可以构造一个具有固定Q值的跟踪滤波器。

著录项

  • 作者

    Drozd, James Michael.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 195 p.
  • 总页数 195
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号