首页> 外文学位 >Numerical modeling of blood flow in prosthetic heart valves and cardiovascular pathologies.
【24h】

Numerical modeling of blood flow in prosthetic heart valves and cardiovascular pathologies.

机译:人工心脏瓣膜和心血管疾病中血流的数值模型。

获取原文
获取原文并翻译 | 示例

摘要

Despite the many advances in our understanding of cardiovascular diseases and how to diagnose and treat them, they are still the leading cause of death and disability in the Western World. Onset and progression of these diseases is due to interplay between pathologic flow conditions and vessel remodeling altering vessel geometries and composition. Advances in numerical simulation techniques and improvements in computational power have opened new avenues to investigate challenging pathological flow problems that underlie and characterize cardiovascular diseases.Mechanical heart valves (MHV) represent pathologic flow conditions common in cardiovascular prosthetic devices. Those result in platelet damage leading to thrombus formation and thromboembolism, which are major impediments to these devices. Numerical simulations were conducted to study platelet damage resulting by pathological flow patterns. The simulations included unsteady Reynolds averaged Navier Stokes (URANUS) and highly resolved direct numerical simulations (DNS) formulations. The thrombogenic potential of different MHV designs was evaluated from the sum of the product of stress and exposure time, determining platelet stress accumulation. Platelet cumulative damage due to repeated passages through the valve was also studied.Vulnerable plaques (VP) and abdominal aortic aneurysms (AAA) are examples of cardiovascular diseases that are driven by pathologic vessel geometries and compositions and compromised hemodynamics. Blood vessel integrity disruption and rupture in these diseases can lead to stroke, heart attack, and death. Numerical studies of their rupture risk was based on incorporating anisotropic vessel tissue material properties, and inclusion of calcification and intraluminal thrombus in patient specific geometries extracted from clinical imaging modalities, using fluid structure interaction (FSI) simulations to examine risk of rupture due to the contribution stresses and vessel tissue deformation.Advanced numerical tools that were developed and employed to study the conditions present in pathological blood vessels and in flows through prosthetic heart valves PHV are presented. These studies tackle highly complex cardiovascular disease processes using sophisticated engineering tools, adding to our understanding of biomechanical problems characterized by the interaction of blood flow with cardiovascular devices and pathological vessel geometries. This can aid optimizing the design of future cardiovascular devices and to augment clinical diagnostics of cardiovascular pathologies.
机译:尽管我们对心血管疾病以及如何诊断和治疗心血管疾病有了许多进步,但它们仍然是西方世界死亡和残疾的主要原因。这些疾病的发作和发展是由于病理性血流状况与血管重塑之间的相互作用,改变了血管的几何形状和组成。数值模拟技术的进步和计算能力的提高为研究具有挑战性的,构成心血管疾病特征的病理性流动问题开辟了新途径。机械心脏瓣膜(MHV)代表了心血管修复设备中常见的病理性流动情况。这些导致血小板损伤,导致血栓形成和血栓栓塞,这是这些装置的主要障碍。进行数值模拟以研究由病理性流型导致的血小板损伤。模拟包括不稳定的雷诺平均Navier Stokes(URANUS)和高度解析的直接数值模拟(DNS)公式。从应力与暴露时间的乘积之和评估了不同MHV设计的血栓形成潜力,从而确定了血小板的应力积累。还研究了由于反复通过瓣膜而造成的血小板累积损伤。易损斑块(VP)和腹主动脉瘤(AAA)是心血管疾病的示例,这些疾病是由病理性血管的几何形状和成分以及受损的血流动力学驱动的。这些疾病的血管完整性破坏和破裂可导致中风,心脏病发作和死亡。他们的破裂风险的数值研究是基于结合各向异性血管组织材料的特性,以及在钙化和管腔内血栓形成从临床成像方式中提取的患者特定几何形状中进行的,并使用流体结构相互作用(FSI)模拟来检查由于破裂引起的破裂风险应力和血管组织变形。介绍了先进的数值工具,这些工具已被开发并用于研究病理性血管和人造心脏瓣膜PHV的流动情况。这些研究使用复杂的工程工具解决了高度复杂的心血管疾病过程,加深了我们对以血流与心血管设备和病理性血管几何结构相互作用为特征的生物力学问题的理解。这可以帮助优化未来心血管设备的设计,并增强心血管疾病的临床诊断。

著录项

  • 作者

    Alemu, Yared.;

  • 作者单位

    State University of New York at Stony Brook.;

  • 授予单位 State University of New York at Stony Brook.;
  • 学科 Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号