首页> 外文学位 >Backstepping design of nonlinear control systems and its applications to vehicle lateral control in automated highway systems.
【24h】

Backstepping design of nonlinear control systems and its applications to vehicle lateral control in automated highway systems.

机译:非线性控制系统的反推设计及其在自动公路系统中车辆横向控制中的应用。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation the effort is to explore new aspects of recursive backstepping design methodology from both theoretical and application point of view. Three main topics are investigated in this dissertation from a backstepping perspective: control of multivariable nonlinear systems whose vector relative degrees are not well defined, steering control of light passenger vehicles on automated highways, and coordinated steering and braking control of commercial heavy vehicles on automated highways.; For a class of affine multivariable nonlinear systems with an equal number of inputs and outputs, if the decoupling matrix is singular, the vector relative degree is not well defined. If the multivariable nonlinear system is strongly invertible and strongly accessible, the vector relative degree of the system can be achieved by adding chains of integrators to the input channels. Several versions of dynamic extension algorithms have been proposed to identify the input channels where dynamic compensators (or integrators) are needed to achieve the nonsingularity of the decoupling matrix. In this dissertation, instead of decoupling the nonlinear system by adding chains of integrators in the input channels, we modify the dynamic extension algorithm by incorporating backstepping design methods to partially close the loop in each design step. The resulting control law by this new approach is a static state feedback law.; Backstepping design methodology is utilized for lateral control of light passenger vehicles and commercial heavy vehicles in Automated Highway Systems (AHS). The steering control algorithm for light passenger vehicles is designed by utilizing the robust backstepping technique, whereas the coordinated steering and braking control algorithm for commercial heavy vehicles is designed by applying the backstepping technique for multivariable nonlinear systems without vector relative degrees.; For lateral control of light passenger vehicles, the lateral tracking error is affected by the relative yaw angle of the vehicle with respect to the road centerline. Then the relative yaw angle is controlled by the front wheel steering command. Intuitively, this backstepping control procedure resembles the human driver behavior. Another advantage of the backstepping controller is that the road disturbance, which does not satisfy the matching condition, can be attenuated effectively. Thus the backstepping design effectively utilizes the feedforward information of the road curvature to generate the feedforward part of the steering command. To satisfy both the ride comfort and safety requirements, we introduce a nonlinear spring term (nonlinear position feedback) which exhibits lower gains at small tracking errors and higher gains at larger tracking errors.; For lateral control of commercial heavy vehicles, a control oriented dynamic modeling approach for articulated vehicles is proposed. A generalized coordinate system is introduced to describe the kinematics of the vehicle. Equations of motion of a tractor-semitrailer vehicle are derived based on the Lagrange mechanics. Experimental studies are conducted to validate the effectiveness of this modeling approach. Two nonlinear lateral control algorithms are designed for a tractor-semitrailer vehicle. The baseline steering control algorithm is designed utilizing input-output linearization. To prevent jackknifing and furthermore reduce tracking errors of the trailer, braking forces are independently controlled on the inner and outer wheels of the trailer. The coordinated steering and braking control algorithm is designed based on the multivariable backstepping technique. Simulations show that the trailer yaw errors under coordinated steering and independent braking force control are smaller than those without independent braking force control. (Abstract shortened by UMI.)
机译:本文的工作是从理论和应用的角度探索递归反推设计方法的新方面。本文从后退的角度研究了三个主要主题:矢量相对度定义不清的多变量非线性系统的控制,自动公路上的轻型乘用车的转向控制以及自动公路上的商用重型车辆的协调转向和制动控制。 。;对于一类具有相等输入和输出数量的仿射多变量非线性系统,如果解耦矩阵是奇异的,则矢量相对度将无法很好地定义。如果该多变量非线性系统是高度可逆的并且是高度可访问的,则可以通过将积分器链添加到输入通道来实现系统的矢量相对度。已经提出了几种动态扩展算法版本,以识别需要动态补偿器(或积分器)以实现去耦矩阵的非奇异性的输入通道。在本文中,我们不是通过在输入通道中添加积分器来解耦非线性系统,而是通过结合反步设计方法来在每个设计步骤中部分闭合环路来修改动态扩展算法。通过这种新方法得出的控制定律是静态反馈定律。 Backstepping设计方法用于自动公路系统(AHS)中的轻型乘用车和商用重型车辆的横向控制。利用稳健的反推技术设计了轻型客车的转向控制算法,而对于无矢量相对度的多变量非线性系统,应用反推技术设计了商用重型车辆的协调转向和制动控制算法。对于轻型客车的侧向控制,横向跟踪误差受车辆相对于道路中心线的相对偏航角的影响。然后,相对偏航角由前轮转向命令控制。直观地,此后退控制过程类似于驾驶员的行为。反步控制器的另一个优点是可以有效地衰减不满足匹配条件的道路干扰。因此,后推设计有效地利用了道路曲率的前馈信息来生成转向命令的前馈部分。为了同时满足乘坐舒适性和安全性的要求,我们引入了一个非线性弹簧项(非线性位置反馈),该误差在小跟踪误差下表现出较低的增益,在大跟踪误差下表现出较高的增益。对于商用重型车辆的横向控制,提出了一种针对关节车辆的面向控制的动态建模方法。引入了广义坐标系来描述车辆的运动学。基于拉格朗日力学,得出了半自动半挂车车辆的运动方程。进行实验研究以验证这种建模方法的有效性。针对拖拉机半挂车设计了两种非线性侧向控制算法。基线转向控制算法是利用输入输出线性化设计的。为了防止起伏并进一步减少拖车的跟踪误差,制动力在拖车的内轮和外轮上得到独立控制。基于多变量反推技术设计了转向和制动协调控制算法。仿真结果表明,在无独立制动力控制的情况下,在转向控制和独立制动力控制下的拖车偏航误差较小。 (摘要由UMI缩短。)

著录项

  • 作者

    Chen, Chieh.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.; Engineering Automotive.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;自动化技术及设备;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号