首页> 外文学位 >Machine tool accuracy enhancement by inverse kinematic analysis and real time error compensation.
【24h】

Machine tool accuracy enhancement by inverse kinematic analysis and real time error compensation.

机译:通过逆运动学分析和实时误差补偿来提高机床精度。

获取原文
获取原文并翻译 | 示例

摘要

Real time error compensation (RTEC) has been one of the most successful techniques to reduce geometric errors as well as thermally induced errors of machine tools. However, long pre-process calibration time and lack of a generalized error kinematics modeling and compensation technique limits the application of this technology.; In this research, a generalized error kinematics modeling technique was developed. This technique can be used to derive error synthesis models for machines with both prismatic and rotary joints. The machine volumetric (or planar) error was described by an error matrix which includes position and orientation errors rather than an error vector which only includes position errors. A generalized error compensation strategy was also developed. An inverse kinematics technique was applied to obtaining compensation signals for machine joints such that machine errors were minimized.; A fast error identification scheme for both geometric errors and thermally induced errors was developed. The inverse kinematics technique was employed to identify machine errors based on measurements made by alternative measurement devices (telescoping ball bar, laser tracker, etc.). These devices can acquire data in a relatively short time compared to a laser interferometer system. An error synthesis model which was derived automatically by the generalized error kinematics modeling method was used to relate the measurements to individual error components. Then a least squares estimation was applied to estimating the coefficients of error component models.; The error identification method was applied to a 3-axis machining center and a 3-axis optical coordinate measuring machine (OCMM). The calibration on the machining center was performed using a telescoping ball bar in three hours for the geometric errors and one day for the thermal errors. The maximum error of the machine was reduced from 320 {dollar}mu{dollar}m to 30 {dollar}mu{dollar}m by the RTEC based on the identified error models. For the OCMM, the geometric errors were identified using a laser tracker in two hours, and the error prediction accuracy was about 100 {dollar}mu{dollar}m while the original machine accuracy was about 2500 {dollar}mu{dollar}m.
机译:实时误差补偿(RTEC)一直是减少机床几何误差和热致误差的最成功技术之一。然而,预处理校准时间长,缺乏通用的误差运动学建模和补偿技术,限制了该技术的应用。在这项研究中,开发了一种广义误差运动学建模技术。该技术可用于导出具有棱柱和旋转接头的机器的误差综合模型。机器体积(或平面)误差由包含位置和方向误差的误差矩阵描述,而不是仅包含位置误差的误差向量描述。还开发了广义误差补偿策略。应用逆运动学技术来获得机器关节的补偿信号,以使机器误差最小。建立了一种针对几何误差和热致误差的快速误差识别方案。逆运动学技术用于基于由其他测量设备(伸缩式球棒,激光跟踪仪等)进行的测量来识别机器错误。与激光干涉仪系统相比,这些设备可以在相对较短的时间内获取数据。通过广义误差运动学建模方法自动导出的误差综合模型用于将测量结果与各个误差分量相关联。然后将最小二乘估计应用于误差分量模型的系数估计。误差识别方法应用于三轴加工中心和三轴光学坐标测量机(OCMM)。使用伸缩式球棒在加工中心上进行校准,在三个小时内进行几何误差,一天内进行热误差。 RTEC根据已识别的误差模型将机器的最大误差从320 {μm}美元减少到30 {μm}美元。对于OCMM,使用激光跟踪器在两个小时内识别出几何误差,并且误差预测精度为约100 {μm}美元,而原始机器精度为约2500μm。

著录项

  • 作者

    Hai, Neiyuan.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号