首页> 外文学位 >A chemical kinetic and numerical study of nitrogen oxides and pollutant formation in low-emission combustion.
【24h】

A chemical kinetic and numerical study of nitrogen oxides and pollutant formation in low-emission combustion.

机译:低排放燃烧中氮氧化物和污染物形成的化学动力学和数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The NO{dollar}rmsb{lcub}x{rcub}{dollar} formation process in lean premixed gas-fired combustion turbines is examined as a function of the primary combustion variables (flame temperature, inlet mixture temperature, pressure, and residence time). The effects of these variables are examined using chemical reactor and laminar one-dimensional computational models.; The flame temperature is determined to be the primary variable affecting the NO{dollar}rmsb{lcub}x{rcub}{dollar} formation process. The apparent activation energies of NO{dollar}rmsb{lcub}x{rcub}{dollar} formation for the 1700 to 1900K range are found to vary from 48.8 to 90.5kcal/gmol, depending on the chemical kinetic mechanism used, the reactor residence time, and the pressure.; For a fixed flame zone residence time and a fixed flame temperature, an increase in the inlet mixture temperature is found to produce an increase in NO{dollar}rmsb{lcub}x{rcub}{dollar} emissions. Increases in flame zone residence time are likewise found to result in increased NO{dollar}rmsb{lcub}x{rcub}{dollar} emissions.; The sensitivity of NO{dollar}rmsb{lcub}x{rcub}{dollar} formation to pressure is found to be strongly influenced by the flame temperature. At a flame temperature of 1700K, there is a neutral or slightly negative NO{dollar}rmsb{lcub}x{rcub}{dollar} pressure sensitivity. However, at a flame temperature of 1900K, the NO{dollar}rmsb{lcub}x{rcub}{dollar} pressure sensitivity is strongly dependent on flame zone residence time and on the chemical kinetic mechanism used.; In order to permit numerical models to predict NO{dollar}rmsb{lcub}x{rcub}{dollar} emissions for practical combustors, a chemical mechanism reduction procedure, and pre- and post-processors for use with CFD codes are developed.; Reduced chemical mechanisms are developed and presented for lean, (0.4 {dollar}leqphileq{dollar} 0.8), high pressure combustion, and for atmospheric pressure combustion over the fuel-air equivalence ratio ranges of 0.4 {dollar}leqphileq{dollar} 0.8, and 1.2 {dollar}leqphileq{dollar} 1.6.; The pre-processor global mechanism "fine-tuning" procedure is developed and applied to cases of lean premixed combustion at atmospheric and representative gas turbine operating pressures.; The post-processor allows for NO{dollar}rmsb{lcub}x{rcub}{dollar} emission prediction from global mechanisms by linking local NO{dollar}rmsb{lcub}x{rcub}{dollar} formation rates to CO concentrations, a method developed under this research.
机译:根据主要燃烧变量(火焰温度,进气混合物温度,压力和停留时间)对稀薄预混合燃气燃气轮机的NO {rmsb {lcub} x {rcub} {dollar}形成过程进行了检查。 。使用化学反应器和层流一维计算模型检查了这些变量的影响。确定火焰温度是影响NO {rmsb} rmsb {lcub} x {rcub} {dollar}形成过程的主要变量。发现在1700至1900K范围内,NO {dolrm} rmsb {lcub} x {rcub} {dollar}形成的表观活化能在48.8kcal / gmol至90.5kcal / gmol之间变化,这取决于所用的化学动力学机制,反应器的位置时间和压力。对于固定的火焰区域停留时间和固定的火焰温度,发现进气混合物温度的升高会导致NO {rmsb {lcub} x {rcub} {dollar}排放量的增加。火焰区停留时间的增加同样会导致NO {dollar} rmsb {lcub} x {rcub} {dollar}排放的增加。发现NO {dolrm} rmsb {lcub} x {rcub} {dollar}的形成对压力的敏感性受火焰温度的强烈影响。在1700K的火焰温度下,存在NO压力敏感度为中性或略为负的NO {dolrm} rmsb {lcub} x {rcub} {dollar}。但是,在1900K的火焰温度下,NO压力敏感度在很大程度上取决于火焰区的停留时间和所用的化学动力学机理。为了使数值模型能够预测实际燃烧器的NOx排放,开发了一种化学机理降低程序以及与CFD代码一起使用的预处理器和后处理器。针对稀薄的燃料(0.4 {dolle} leqphileq {dollar} 0.8),高压燃烧以及大气压燃烧在燃料空气当量比为0.4 {dolle} leqphileq {dollar} 0.8的范围内开发并提出了减少的化学机理,和1.2 {dolle} leqphileq {dollar} 1.6 .;开发了预处理器全局机制“微调”程序,并将其应用于常压和典型燃气轮机工作压力下的稀薄预混燃烧的情况。后处理器通过将局部NO形成速率与CO浓度联系起来,从全局机制中预测NO的排放预测,根据这项研究开发的一种方法。

著录项

  • 作者

    Nicol, David Gardner.;

  • 作者单位

    University of Washington.;

  • 授予单位 University of Washington.;
  • 学科 Engineering Mechanical.; Engineering Environmental.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;环境污染及其防治;
  • 关键词

  • 入库时间 2022-08-17 11:49:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号