首页> 外文学位 >Oil-water flow patterns in horizontal pipes.
【24h】

Oil-water flow patterns in horizontal pipes.

机译:水平管中的油水流动模式。

获取原文
获取原文并翻译 | 示例

摘要

Oil-water flow pattern transitions in horizontal pipes have been studied both experimentally and theoretically. A new state-of-the-art, gas-oil-water test facility was designed, constructed and operated. A transparent test section (1.9735 in. ID {dollar}times{dollar} 51 ft long) can be inclined at any angle, to study both upward and downward flow simultaneously. Mineral oil and water were the working fluids ({dollar}musb{lcub}o{rcub}{dollar}/{dollar}musb{lcub}w{rcub}{dollar} = 29.6, {dollar}rhosb{lcub}o{rcub}{dollar}/{dollar}rhosb{lcub}w{rcub}{dollar} = 0.85 and {dollar}sigma{dollar} = 36 dynes/cm @ 78{dollar}spcirc{dollar}F). Only horizontal flow tests were conducted.; A new classification for oil-water flow patterns based on published and acquired data is proposed. Six flow patterns were identified and classified into two categories: Segregated flow and Dispersed flow. Stratified flow and stratified flow with some mixing at the interface (ST & MI) are segregated flow patterns. The dispersed flow can be either water dominated or oil dominated. A dispersion of oil in water over a water layer and an emulsion of oil in water are water dominated flow patterns. An emulsion of water in oil and a dual dispersion are oil dominant flow patterns. Pressure drop decreases when the transition to dispersed flow is crossed. Conductance probe data and high speed photographs are adequate flow pattern identification tools while wall pressure fluctuations are not. Slippage is only relevant for segregated flow patterns.; The oil-water flow pattern transitions for light oils are predicted using the two-fluid model and a balance between gravity and turbulent fluctuations normal to the axial flow direction. Linear and non-linear analyses reveal that the stratified/non-stratified transition must be addressed with the complete two-fluid model. Stratified flow is predicted by the viscous Kelvin-Helmholtz analysis while inviscid Kelvin-Helmholtz theory predicted the ST & MI flow pattern. Both the viscous Kelvin-Helmholtz analysis and structural stability criterion are satisfied simultaneously. For the dispersed flow pattern, the predicted drop sizes from the Hinze and Levich models are modified in order to account for the effect of the dispersed phase concentration. The controlling parameter for the coalescence phenomena is the water fraction. The model performance is excellent and compares well with published data. Moreover, the model gives reasonable predictions for inclined flow.
机译:已经通过实验和理论研究了水平管中的油-水流型转变。设计,建造和运营了一个新的,最新的,油气水测试设备。透明的测试部分(1.9735英寸,内径{美元}倍{美元} 51英尺长)可以倾斜任何角度,以同时研究向上和向下的流动。矿物油和水是工作流体({dollar} musb {lcub} o {rcub} {dollar} / {dollar} musb {lcub} w {rcub} {dollar} = 29.6,{dollar} rhosb {lcub} o { rcub} {dollar} / {dollar} rhosb {lcub} w {rcub} {dollar} = 0.85和{dollar} sigma {dollar} = 36达因/厘米@ 78 {dollar} spcirc {dollar} F)。仅进行水平流动测试。提出了一种基于已发布数据和采集数据的油水流态分类方法。确定了六个流型并将其分为两类:隔离流和分散流。界面(ST和MI)处混合的分层流和分层流是分离的流型。分散流可以是水为主或油为主。水在水中的油分散体和水在水中的乳液是水主导的流动模式。油中的水乳化液和双重分散液是油的主要流动形式。当过渡到分散流的过渡时,压降降低。电导探针数据和高速照片是足够的流型识别工具,而壁压力波动则不是。滑移仅与分离的流型有关。轻油的油-水流型转换是使用双流体模型预测的,并且重力和湍流波动之间的平衡垂直于轴向流动方向。线性和非线性分析表明,必须使用完整的双流体模型解决分层/非分层过渡。分层流动是通过粘性的Kelvin-Helmholtz分析预测的,而无粘性的Kelvin-Helmholtz理论则预测了ST和MI的流动模式。同时满足粘性开尔文-亥姆霍兹分析和结构稳定性准则。对于分散流型,对Hinze和Levich模型的预测液滴尺寸进行了修改,以考虑分散相浓度的影响。聚结现象的控制参数是水分数。该模型的性能非常好,并且可以与已发布的数据进行比较。此外,该模型对倾斜流给出了合理的预测。

著录项

  • 作者

    Trallero, Jose Luis.;

  • 作者单位

    The University of Tulsa.;

  • 授予单位 The University of Tulsa.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号