首页> 外文学位 >Multiscale experimental approaches to lithium-ion battery research: From particle analysis to optimized battery design.
【24h】

Multiscale experimental approaches to lithium-ion battery research: From particle analysis to optimized battery design.

机译:锂离子电池研究的多尺度实验方法:从颗粒分析到优化的电池设计。

获取原文
获取原文并翻译 | 示例

摘要

We approach the challenges in Li-ion battery research through multiscale experiments: a small but macro scale Li-ion battery was designed for an implantable surgical device for distraction osteogenesis, while in particle- to micro-scale, the baseline cathode materials for Li-ion batteries were investigated for their structural and electrochemical characteristics. For the optimized battery design study, we first identified the power/energy requirements for a common clinical protocol using a novel distraction device developed in parallel to its battery design, and then ran an algorithm to select a commercially available battery with minimal volume that satisfied the system demands. A polymer Li-ion battery was selected due to high power and energy densities as well as its favorable geometry. A bench-top prototype device, integrating an actuator, a control circuit, and a battery, was fabricated to test its functionality and reliability, and eventually will be ready for animal implantation studies.;In an experimental study with single LiMn2O4 particles, we take one step toward precise modeling and control of large format cells in EV applications by generating and incorporating accurate model parameters, including diffusion coefficients from CV and PITT methods, and realistic particle geometries from AFM scanning data. Simulation of Li-ion intercalation with the implemented experimental measurements showed that LiMn2O 4 particles could be under higher intercalation-induced stress due to slower diffusion and local stress concentration at the grain boundaries.;Particle- to micro-scale experimental studies of Li-ion insertion metal oxide cathode materials were conducted using simple forms of the baseline materials, such as thin films and dispersed single particles, aiming to understand their structural characteristics and electrochemical properties. Various characterization techniques including SEM, TEM, XRD, and AFM were used to observe external and internal microscopic morphology of primary particles from candidate cathode materials for EV applications, such as LiFePO4, Li[Ni1/3Co 1/3Mn1/3]O2, and LiMn2O4. Their anisotropic and inhomogeneous nature was revealed due to the hierarchic structure consisting of crystal grains and grain boundaries. Thin film study of LiMn2O4 also showed similarly complex microstructures that were found to be determined by their fabrication conditions, including substrate material and annealing temperature.
机译:我们通过多尺度实验来应对锂离子电池研究中的挑战:小型但宏大的锂离子电池设计用于植入式外科手术器械,以分散成骨作用,而锂离子电池的基线至微米尺度则是基线阴极材料。研究了离子电池的结构和电化学特性。对于优化的电池设计研究,我们首先使用与电池设计并行开发的新型牵引装置来确定常见临床方案的功率/能量要求,然后运行一种算法,以选择体积最小的商用电池来满足系统需求。选择聚合物锂离子电池是由于其高功率和能量密度以及其良好的几何形状。制造了一个集成有执行器,控制电路和电池的台式原型设备,以测试其功能和可靠性,并最终将其用于动物植入研究。在单个LiMn2O4颗粒的实验研究中,我们采用通过生成和合并精确的模型参数(包括CV和PITT方法的扩散系数以及AFM扫描数据的真实粒子几何形状),朝着电动汽车应用中的大型单元的精确建模和控制迈出了第一步。锂离子嵌入的模拟实验结果表明,LiMn2O 4颗粒由于晶界扩散和局部应力集中较慢而可能处于较高的嵌入诱导应力下。插入金属氧化物阴极材料是使用基线材料的简单形式进行的,例如薄膜和分散的单个颗粒,旨在了解其结构特征和电化学性能。使用包括SEM,TEM,XRD和AFM在内的各种表征技术,观察了用于电动汽车的候选阴极材料(例如LiFePO4,Li [Ni1 / 3Co 1 / 3Mn1 / 3] O2和Al)的初级粒子的外部和内部微观形态。 LiMn2O4。由于由晶粒和晶界组成的分层结构,揭示了它们的各向异性和不均匀性质。 LiMn2O4的薄膜研究还显示出类似的复杂微观结构,这些微观结构由其制造条件(包括衬底材料和退火温度)决定。

著录项

  • 作者

    Chung, Myoungdo.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号