首页> 外文学位 >A numerical study of the starting process in a hypersonic shock tunnel.
【24h】

A numerical study of the starting process in a hypersonic shock tunnel.

机译:高超音速冲击隧道起爆过程的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation represents the first time calculations have been made of the unsteady viscous simulation of the starting process in a hypersonic shock tunnel including the bifurcation phenomenon due to the interaction of the reflected shock with the boundary layer generated by the incident shock in the shock tube.; In order to simulate the unsteady viscous flow in the NASA Ames 16-inch hypersonic shock tunnel, which consists of axisymmetric shapes (shock tube and nozzle), rectangular shape (test cabin) and octagonal shape (diffuser), a time-dependent ADI (Alternating Direction Implicit) axisymmetric full Navier-Stokes code with a second order upwind TVD (Total Variation Diminishing) scheme and a time-dependent three-dimensional thin layer Navier-Stokes code with an explicit MacCormack TVD scheme have been developed. As shown in the code validation study, these Navier-Stokes codes with the high resolution TVD algorithms give fair agreement with available experimental data and exact solutions.; Numerical simulations of the starting process for the NASA Ames 16-inch Hypersonic shock tunnel show that during the reflected shock interaction process at the end of the shock tube, the bifurcation phenomenon, and the strong vortices become dominant features. The vortices due to the reflected shock interactions appear in the axisymmetric simulation but are not generated in the two-dimensional flow.; For the nominal testing condition, the starting process in the NASA Ames shock tunnel takes 1700 {dollar}mu{dollar} sec. The required total testing time consists of the time for the starting process, 1.7 m sec, and the time for the flow establishment over a model in the test cabin which strongly depends on the model shape and size and model mounting location. For a 15{dollar}spcirc{dollar}-cone model, the minimum required testing time is estimated as at least 2.7 m sec for the steady state.
机译:本论文是首次对高超声速激波隧道的启动过程进行非稳态粘性模拟计算,该过程包括分叉现象,这是由于反射激波与激波管中入射激波所产生的边界层的相互作用所致。 ;为了模拟NASA Ames 16英寸高超音速冲击隧道中的不稳定流动,该隧道由轴对称形状(冲击管和喷嘴),矩形形状(测试舱)和八边形形状(扩散器)组成,它们是随时间变化的ADI(已经开发了具有二阶迎风TVD(总变化量减小)方案的轴对称全Navier-Stokes码以及具有显式MacCormack TVD方案的随时间变化的三维薄层Navier-Stokes码。如代码验证研究所示,这些带有高分辨率TVD算法的Navier-Stokes代码与可用的实验数据和精确的解决方案具有相当的一致性。 NASA Ames 16英寸高超音速冲击隧道启动过程的数值模拟表明,在反射振动在冲击管末端的相互作用过程中,分叉现象和强旋涡成为主要特征。由于反射的冲击相互作用而产生的涡流出现在轴对称模拟中,但并未在二维流中产生。对于标称测试条件,NASA Ames冲击隧道的启动过程需要1700 {dollar} mu {dollar} sec。所需的总测试时间包括启动过程的时间1.7 m sec,以及测试舱中模型上流建立的时间,这在很大程度上取决于模型的形状和大小以及模型的安装位置。对于15 {圆锥形的模型,稳态所需的最小测试时间估计至少为2.7 m sec。

著录项

  • 作者

    Lee, Jang-Yeon.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1993
  • 页码 217 p.
  • 总页数 217
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号