首页> 外文学位 >Phosphorus and temperature effects on nodal and seminal root morphology of two maize genotypes.
【24h】

Phosphorus and temperature effects on nodal and seminal root morphology of two maize genotypes.

机译:磷和温度对两种玉米基因型的节根和精根形态的影响。

获取原文
获取原文并翻译 | 示例

摘要

Phenotypic plasticity (gene by environment interaction) of root systems is one possible mechanism of plant adaptation to nonuniform distribution of soil phosphorus. The purpose of this study was to examine the effects of phosphorus and temperature on the root morphology and P uptake of two maize (Zea mays L.) genotypes that have differences in early growth and phenotypic plasticity.; Three studies were conducted using CM37, a genotype with good early growth and high phenotypic plasticity and W153R, a genotype with poor seedling growth and low phenotypic plasticity. The effects of P (5, 45, and 300 mg kg{dollar}sp{lcub}-1{rcub}{dollar}) on root morphology and P uptake were examined for the first six growth stages. Subsequent studies examined the effect of soil temperature (15, 20, and 25{dollar}spcirc{dollar}C) and placement of P, on nodal and seminal root morphology. The mechanistic Barber-Cushman nutrient uptake model was used to predict P uptake based on root morphology and P supply characteristics and compared to the observed P uptake. A Maddock (sandy, mixed Udorthentic Haploborolls) soil was used. Phosphorus as NH{dollar}sb4{dollar}H{dollar}sb2{dollar}PO{dollar}sb4{dollar} was used as the P source.; Phosphorus increased root growth and development earlier and to a greater degree for CM37. The formation of lateral roots on CM37 was increased by both temperature and P to a greater extent than on W153R. Fertilizing the nodal root compartment increased root growth and development more than localizing P in the seminal compartment. Phosphorus increased nodal root length more at the highest soil temperature in both genotypes. Phosphorus uptake was more accurately predicted for low soil P levels, nodal roots, and W153R.; The ability of root system to respond to differences in soil environments increases the ability of the roots to acquire localized sources of phosphorus. Selecting or breeding genotypes with higher phenotypic plasticity could increase root system response by increasing the formation of roots in a favorable environment thus increasing root surface area and P uptake. This could result in a crop with higher rates of growth and development under less than ideal conditions and thus a higher yield.
机译:根系的表型可塑性(通过环境相互作用产生的基因)是植物适应土壤磷不均匀分布的一种可能机制。这项研究的目的是检验磷和温度对两种玉米基因型的根系形态和磷吸收的影响,这两个基因型在早期生长和表型可塑性方面存在差异。使用CM37(一种具有良好的早期生长和高表型可塑性的基因型)和W153R(一种具有较弱的幼苗生长和低表型可塑性的基因型)进行的三项研究。在最初的六个生长阶段,研究了磷(5、45和300 mg kg {sp} {{lcub} -1 {rcub} {dol})对根系形态和磷吸收的影响。随后的研究检查了土壤温度(15、20和25℃,25℃)和P的放置对节根和精根形态的影响。机械的Barber-Cushman营养素吸收模型用于根据根系形态和磷素供应特征预测磷素吸收,并与观察到的磷素吸收进行比较。使用了Maddock(沙质,混合的Udorthentic Haploborolls)土壤。磷以NH {dollar} sb4 {dollar} H {dollar} sb2 {dollar} PO {dollar} sb4 {dollar}作为磷源。磷可以更早地促进根的生长和发育,而对于CM37而言则更高。与W153R相比,CM37上侧根的形成因温度和磷的增加而增加。施肥节根区室比在精浆区室中定位P更能促进根的生长和发育。两种基因型在最高土壤温度下,磷都增加了节根的长度。低土壤磷水平,节根和W153R可以更准确地预测磷的吸收。根系对土壤环境差异的响应能力提高了根系获取局部磷源的能力。选择或育种具有较高表型可塑性的基因型可通过在有利环境中增加根的形成从而增加根的表面积和磷的吸收来增加根系反应。在不理想的条件下,这可能导致农作物具有较高的生长发育速度,从而提高单产。

著录项

  • 作者

    Hajabbasi, Mohammad Ali.;

  • 作者单位

    South Dakota State University.;

  • 授予单位 South Dakota State University.;
  • 学科 Agriculture Agronomy.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 171 p.
  • 总页数 171
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 农学(农艺学);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号