首页> 外文学位 >Asymptotic properties of polynomials satisfying three-term recurrence relations.
【24h】

Asymptotic properties of polynomials satisfying three-term recurrence relations.

机译:满足三项递归关系的多项式的渐近性质。

获取原文
获取原文并翻译 | 示例

摘要

It is known that the {dollar}n{dollar}th denominators {dollar}Qsb{lcub}n{rcub}(z){dollar} of a real J-fraction{dollar}{dollar}{lcub}ksb1 over z + ellsb1{rcub}-{lcub}ksb2 over z + ellsb2{rcub}-{lcub}ksb3 over z + ellsb3{rcub}-cdots'{dollar}{dollar}where {dollar}ell sb{lcub}n{rcub}{dollar} {dollar}in{dollar} {dollar}IR{dollar}, {dollar}n{dollar} {dollar}geq{dollar} 1 and {dollar}ksb{lcub}n{rcub}>0,ngeq{dollar} 2, form an orthogonal polynomial sequence (OPS) with respect to a distribution function {dollar}psi(t){dollar} on {dollar}IR{dollar} and, conversely, every OPS, {dollar}{lcub}Qsb{lcub}n{rcub}(z){rcub}{dollar}, is the sequence of denominators of a real J-fraction. Using separate convergence results for continued fractions, we obtain asymptotic properties for families of orthogonal polynomials and continued fractions.; We begin by considering a one parameter family of continued fractions with{dollar}{dollar}eqalign{lcub}&ksb1 := bsb1,qquad ksb{lcub}n{rcub} := bsb{lcub}2n-2{rcub} bsb{lcub}2n-1{rcub},qquad n geq 2,cr&ellsb1 := bsb2,qquad ellsb{lcub}n{rcub} := bsb{lcub}2n-1{rcub} + bsb{lcub}2n{rcub},qquad n geq 2,cr{rcub}{dollar}{dollar}and{dollar}{dollar}bsb{lcub}n{rcub} := {lcub}1 over 4lbrack 4(n + a)sp2 - 1rbrack {rcub}, a in IR leftlbrack-{lcub}1over2{rcub},-{lcub}3over2{rcub},-{lcub}5over2{rcub},cdotsrightrbrack.{dollar}{dollar}First proving an explicit closed form expression for the denominators, we then prove {dollar}{lcub}zsp{lcub}-n{rcub}Qsb{lcub}n{rcub}(z){rcub}{dollar} converges to an entire function {dollar}Q(z){dollar}. {dollar}Q(z){dollar} is written in terms of Bessel and gamma functions.; Continuing with developed methods, we next consider the two parameter family of continued fractions related to Jacobi polynomials where{dollar}{dollar}eqalign{lcub}&ksb1 := asb1,qquad ksb{lcub}n{rcub} := asb{lcub}2n-2{rcub}a sb{lcub}2n-1{rcub},qquad ngeq 2,cr&ellsb1 := asb2,qquad ellsb{lcub}n{rcub} := asb{lcub}2n-1{rcub}+asb{lcub}2n{rcub},qquad ngeq 2,cr{rcub}{dollar}{dollar}and {dollar}asb1 := 1{dollar}, {dollar}{dollar}eqalign{lcub}asb{lcub}2n{rcub}&:= {lcub}-(beta-alpha+n-{lcub}1over2{rcub})(alpha+n-1)over(beta+2n-2)(beta+2n-1){rcub},cr asb{lcub}2n+1{rcub}&:= {lcub}-(beta-alpha+n)(alpha+n-{lcub}1over2{rcub})over(beta+2n-1)(beta+2n){rcub}, ngeq 1,cr{rcub}{dollar}{dollar}for {dollar}alpha,betain doubc, asb{lcub}n{rcub}not=0{dollar}. We prove {dollar}{lcub}(2z/n)sp{lcub}n{rcub}Qsb{lcub}n{rcub}(n/2z){rcub}{dollar} converges to {dollar}esp{lcub}-z{rcub}{dollar}.; Lastly, for {dollar}ksb{lcub}n{rcub},ellsb{lcub}n{rcub} in doubc{dollar}, {dollar}ksb{lcub}n{rcub} not={dollar} 0, we prove{dollar}{dollar}limlimitssb{lcub}n to infty{rcub}left({lcub}z over n + 1{rcub}right)Qsb{lcub}n{rcub}left({lcub}n + 1 over z{rcub}right) = 1.{dollar}{dollar}Examples include Jacobi polynomials, associated Jacobi polynomials and exceptional Jacobi polynomials.
机译:已知在z +上的实J分数{dollar} {dollar} {lcub} ksb1的第{dollar} n {dollar}分母{dollar} Qsb {lcub} n {rcub}(z){dollar} ellsb1 {rcub}-{lcub} ksb2 over z + ellsb2 {rcub}-{lcub} ksb3 over z + ellsb3 {rcub} -cdots'{dollar} {dollar}其中{dollar} ell sb {lcub} n {rcub} {dollar} {dollar} in {dollar} IR {dollar},{dollar} n {dollar} {dollar} geq {dollar} 1和{dollar} ksb {lcub} n {rcub}> 0,ngeq { dollar} 2形成关于{dollar} IR {dollar}上的分布函数{dollar} psi(t){dollar}的正交多项式序列(OPS),反过来,每个OPS都构成{dollar} {lcub} Qsb {lcub} n {rcub}(z){rcub} {dollar}是实J分数的分母的序列。使用连续分数的单独收敛结果,我们获得了正交多项式和连续分数族的渐近性质。我们首先考虑一个带有{dollar} {dollar} eqalign {lcub}&ksb1:= bsb1,qquad ksb {lcub} n {rcub}:= bsb {lcub} 2n-2 {rcub} bsb { lcub} 2n-1 {rcub},qquad n geq 2,cr&ellsb1:= bsb2,qquad ellsb {lcub} n {rcub}:= bsb {lcub} 2n-1 {rcub} + bsb {lcub} 2n {rcub}, qquad n geq 2,cr {rcub} {dollar} {dollar}和{dollar} {dollar} bsb {lcub} n {rcub}:= {lcub} 1超过4lbrack 4(n + a)sp2-1rbrack {rcub} ,in IR leftlbrack- {lcub} 1over2 {rcub},-{lcub} 3over2 {rcub},-{lcub} 5over2 {rcub},cdotsrightrbrack。{dollar} {dollar}首先证明了分母的显式封闭形式表达式。 ,然后证明{dollar} {lcub} zsp {lcub} -n {rcub} Qsb {lcub} n {rcub}(z){rcub} {dollar}收敛到整个函数{dollar} Q(z){dollar }。 {dollar} Q(z){dollar}是根据Bessel和伽马函数编写的。继续使用已开发的方法,我们接下来考虑与Jacobi多项式有关的连续分数的两个参数族,其中{dollar} {dollar} eqalign {lcub}&ksb1:= asb1,qquad ksb {lcub} n {rcub}:= asb {lcub} 2n-2 {rcub} a sb {lcub} 2n-1 {rcub},qquad ngeq 2,cr&ellsb1:= asb2,qquad ellsb {lcub} n {rcub}:= asb {lcub} 2n-1 {rcub} + asb {lcub} 2n {rcub},qquad ngeq 2,cr {rcub} {dollar} {dollar}和{dollar} asb1:= 1 {dollar},{dollar} {dollar} eqalign {lcub} asb {lcub} 2n { rcub}&:= {lcub}-(beta-alpha + n- {lcub} 1over2 {rcub})(alpha + n-1)over(beta + 2n-2)(beta + 2n-1){rcub}, cr asb {lcub} 2n + 1 {rcub}&:= {lcub}-(beta-alpha + n)(alpha + n- {lcub} 1over2 {rcub})over(beta + 2n-1)(beta + 2n ){rcub},ngeq 1,cr {rcub} {dollar} {dollar}表示{dollar} alpha,请获得doubc,asb {lcub} n {rcub} not = 0 {dollar}。我们证明{dollar} {lcub}(2z / n)sp {lcub} n {rcub} Qsb {lcub} n {rcub}(n / 2z){rcub} {dollar}收敛到{dollar} esp {lcub}- z {rcub} {dollar}。最后,对于doubc {dollar}中的{dollar} ksb {lcub} n {rcub},ellsb {lcub} n {rcub},{dollar} ksb {lcub} n {rcub} not = {dollar} 0,我们证明{ dollar} {dollar} limlimitssb {lcub} n到infty {rcub} left(在n + 1上的{lcub} z {right)qsb {lcub} n {rcub}上的左({lcub} n +1在z {rcub上) }右} =1。{美元} {美元}示例包括Jacobi多项式,关联的Jacobi多项式和例外Jacobi多项式。

著录项

  • 作者

    Wyshinski, Nancy Jean.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 80 p.
  • 总页数 80
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号