首页> 外文学位 >Fluid motion: Effect on cycle-to-cycle combustion variation, flame development, and spark delivery in spark-ignition engines.
【24h】

Fluid motion: Effect on cycle-to-cycle combustion variation, flame development, and spark delivery in spark-ignition engines.

机译:流体运动:对火花点火发动机中的逐周期燃烧变化,火焰发展和火花传递产生影响。

获取原文
获取原文并翻译 | 示例

摘要

Cycle-resolved Laser Doppler Velocimeter measurements are taken at the spark gap of a firing optical engine. These measurements are correlated with peak pressure and spark energy. The purpose is to gain a deeper understanding on how mean flow fluctuations at the spark gap affect spark delivery, flame development, and cycle-to-cycle combustion variation. The engine intake port is modified to vary the level of swirl within the combustion chamber. Spark voltage and current are measured to characterize ignition system performance, and cylinder pressure measurements give information about the combustion process. The spark plug electrodes are rotated to determine how their orientation affects spark delivery. A conditional sampling analysis of the velocity-pressure data is also performed.;Engine combustion cycles which have a higher mean flow velocity at the spark gap before ignition will have a higher peak cylinder pressure. This result does not depend on flow direction and appears to be due to reduced heat transfer to spark plug electrodes and an increased spark energy release rate. The correlation between cycle resolved mean flow velocity and peak pressure increases if the absolute value of the velocity measurements is used. Also, the greater the number of velocity measurements used in the determination of the cycle-resolved mean velocity, the greater the correlation.;Engine cycles which have a higher mean flow velocity will also cause the ignition system to deliver more spark energy. This result was obtained on a cycle-by-cycle basis and under steady state conditions. For the steady state conditions, the mean flow velocity was changed by modifying the port configuration.
机译:周期分辨激光多普勒测速仪的测量是在点火光学引擎的火花隙处进行的。这些测量值与峰值压力和火花能量相关。目的是要更深入地了解火花间隙处的平均流量波动如何影响火花的输送,火焰的产生以及周期与周期之间的燃烧变化。修改发动机进气口以改变燃烧室内的涡旋程度。测量火花电压和电流以表征点火系统的性能,并且气缸压力测量可提供有关燃烧过程的信息。旋转火花塞电极以确定它们的方向如何影响火花传输。还对速度-压力数据进行了条件采样分析。发动机燃烧循环在点火前在火花隙处具有较高的平均流速,将具有较高的峰值气缸压力。该结果不依赖于流动方向,并且似乎是由于减少了到火花塞电极的热传递和增加的火花能量释放速率。如果使用速度测量的绝对值,则循环解析的平均流速和峰值压力之间的相关性会增加。同样,用于确定循环分辨的平均速度的速度测量次数越多,相关性就越大。具有较高平均流速的发动机循环也将导致点火系统传递更多的火花能量。该结果是在逐周期的基础上并在稳态条件下获得的。对于稳态条件,通过修改端口配置来更改平均流速。

著录项

  • 作者

    Keller, Philip Shafer.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Mechanical.;Engineering Automotive.
  • 学位 Ph.D.
  • 年度 1991
  • 页码 114 p.
  • 总页数 114
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号