首页> 外文学位 >Finite element analysis of the inflation and cooling stages in blow molding operations.
【24h】

Finite element analysis of the inflation and cooling stages in blow molding operations.

机译:吹塑操作中充气和冷却阶段的有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

Axisymmetric and nonisothermal inflation of fluid annular menisci under an imposed pressure gradient is analyzed by solving the unsteady momentum and energy conservation equations coupled with an appropriate constitutive expression, and subject to kinematic, dynamic and heat transfer boundary conditions. Numerical calculations combine Galerkin/finite element discretization with a fully-implicit time integration algorithm. This procedure simultaneously determines the flow field and temperature distribution within the meniscus together with the moving surfaces at every time step. Dynamic simulations of the inflation process verify and extend the conclusions reached from an equilibrium stability analysis, and they indicate that the presence of a confining wall has a stabilizing effect on the inflation process. Nonisothermal calculations show that the inflation rate is increased as a result of higher temperature within the meniscus; but, the instantaneous shape and final thickness distribution upon wall contact remain virtually identical to the isothermal results. The critical factor during inflation is the temperature distribution within the meniscus that could arise as a result of its uneven cooling prior to inflation. Due to the temperature dependence of the physical properties, hotter regions of the material deform at a faster rate than cooler regions and the thickness of the inflated part is affected. Inflation of the meniscus that results in full attachment to a confining mold wall takes only a small fraction of the time required to cool the material down to the ambient gas temperature. The results of the present study illustrate how computer simulations may be used as a design tool for the blow molding process, and they show good agreement with available experiments.
机译:通过求解不稳定的动量方程和能量守恒方程并结合适当的本构表达式,并在运动学,动态和热传递边界条件下,分析了在施加的压力梯度下流体环形弯液面的轴对称和非等温膨胀。数值计算将Galerkin /有限元离散化与完全隐式时间积分算法结合在一起。此过程在每个时间步同时确定弯月面内的流场和温度分布以及移动表面。充气过程的动态仿真验证并扩展了通过平衡稳定性分析得出的结论,并且它们表明限制壁的存在对充气过程具有稳定作用。非等温计算表明,由于弯液面温度升高,通货膨胀率增加。但是,壁接触时的瞬时形状和最终厚度分布实际上与等温结果相同。充气过程中的关键因素是弯月面内的温度分布,这是由于在充气之前冷却不均匀而导致的。由于物理特性对温度的依赖性,材料的较热区域比较冷区域以更快的速度变形,从而影响了充气部分的厚度。弯月面的膨胀导致将其完全附接到密封模具壁上,仅花费将材料冷却至环境气体温度所需时间的一小部分。本研究的结果说明了如何将计算机模拟用作吹塑工艺的设计工具,并且它们与可用的实验显示出很好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号