首页> 外文学位 >CMOS mixed-signal charge-metering stimulus amplifier for biomimetic microelectronic systems.
【24h】

CMOS mixed-signal charge-metering stimulus amplifier for biomimetic microelectronic systems.

机译:用于仿生微电子系统的CMOS混合信号电荷计量激励放大器。

获取原文
获取原文并翻译 | 示例

摘要

Stimulus amplifier or microstimulator is used in most biomedical implantable prosthesis device, since it establishes the interface between the electrical circuits and the tissue neuron. It is functionally the closest circuit to the tissue neurons. Open-loop system designs of voltage-mode and current-mode stimulus amplifiers had been reported in literatures. However, they have low accuracy on charge amount and charge-balance due to the nonlinear and time-variant electrode and tissue interface load. Power efficiency of current-mode stimulus amplifier is low and variable with different stimulus current and load. In this dissertation, a novel charge-metering stimulus amplifier is proposed for high performance neuron stimulation in the Biomimetic Microelectronic Systems. The charge-metering stimulus amplifier is the first stimulus amplifier with closed-loop control for high charge precision and small charge-imbalance. It is also the first charge-mode stimulus amplifier compared with existing voltage-mode and current-mode stimulus amplifier. A discrete-time charge-metering stimulus amplifier is designed with IBM CMOS 0.18um 7RF process. New circuit techniques like high-voltage isolation, half-clock sampling, and smart integration folding are used in the switched-capacitor circuits design. CMOS low power design techniques are applied in the design flow from system level to transistor level. Charge error of 1% and charge imbalance of 0.5% are proposed in the design. High power efficiency and maximum available stimulus current are achieved. The measured results from a fabricated prototype chip proved its functionality and performance. Further future work on sensor resistor calibration and high-voltage and low-voltage hybrid single chip solution are also discussed at the end of the dissertation.
机译:刺激放大器或微刺激器在大多数生物医学植入式假体设备中使用,因为它在电路和组织神经元之间建立了接口。从功能上讲,它是最接近组织神经元的回路。文献已经报道了电压模式和电流模式激励放大器的开环系统设计。然而,由于非线性和时变的电极和组织界面负载,它们在电荷量和电荷平衡方面的准确性较低。电流模式激励放大器的功率效率低,并且随着激励电流和负载的不同而变化。本文提出了一种新型的电荷计量刺激放大器,用于仿生微电子系统中的高性能神经元刺激。电荷计量激励放大器是第一款具有闭环控制的激励放大器,可实现高精度充电和较小的电荷不平衡。与现有的电压模式和电流模式激励放大器相比,它也是第一款电荷模式激励放大器。离散时间电荷计量激励放大器采用IBM CMOS 0.18um 7RF工艺设计。开关电容器电路设计中使用了诸如高压隔离,半时钟采样和智能积分折叠之类的新电路技术。从系统级到晶体管级的设计流程中都采用了CMOS低功耗设计技术。设计中提出了1%的充电误差和0.5%的充电不平衡。实现了高功率效率和最大可用激励电流。预制原型芯片的测量结果证明了其功能和性能。论文的最后还讨论了传感器电阻校准以及高压和低压混合单芯片解决方案的进一步工作。

著录项

  • 作者

    Fang, Xiang.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号