首页> 外文学位 >Automated detection and time lapse analysis of dendritic spines in laser scanning microscopy images.
【24h】

Automated detection and time lapse analysis of dendritic spines in laser scanning microscopy images.

机译:在激光扫描显微镜图像中自动检测和分析树突棘。

获取原文
获取原文并翻译 | 示例

摘要

The branches extending from the cell body of neurons, the dendrites, receive more than 90% of the synaptic contacts made into that neuron. In many neurons of the mammalian brain, excitatory synapses involve specialized structures called dendritic spines that protrude from the dendrites and contain the molecules and organelles involved in the postsynaptic processing of the synaptic information. Neuron morphology, as captured in part by the structure of these spines, is illustrative of neuronal function and can be instrumental in better understanding the dysfunction seen in neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Hence researchers have shown great interest in quantitatively studying dendritic spine morphology and density both statically and as a function of time. Such studies are typically carried out through the analysis of data collected from a range of microscopy modalities including confocal laser scanning microscopy (CLSM) and two-photon laser scanning microscopy (2PLSM).;Due to the size and complexity of these data sets, manually analyzing the morphological changes of dendritic spines is very time consuming. In the thesis, we describe robust, automated approaches for dendritic spine detection and measurement that are especially suitable to the batch processing of large neuronal image data sets. Our work is roughly divided into three related components. First, we focus on an image processing pipeline we have developed for the neuroinformatics processing system released from our lab called Neuron Image Quantitator (NeuronIQ), an integrated system for automatic dendrite spine detection, quantification, and analysis. Second, to further improve detection results and solve a collection of related "hard problems" (such as disconnected spine segmentation) faced by existing automatic or semi-automatic methods, a post-processing segmentation algorithm based on a Maximum a Posteriori-orientated Markov random field (MAP-OMRF) is discussed in detail. Finally, we will present an efficient particle filter-based algorithm that is capable of tracking morphological changes in the spines over time. Possible future topics will be discussed at the end of the thesis.
机译:从神经元细胞体(树突)延伸出来的分支接受了该神经元中90%以上的突触接触。在哺乳动物大脑的许多神经元中,兴奋性突触涉及称为树突棘的特殊结构,该结构从树突突伸出并包含与突触后信息有关的分子和细胞器。由这些棘突的结构部分捕获的神经元形态可说明神经元功能,并可有助于更好地了解在神经退行性疾病(如阿尔茨海默氏病和帕金森氏病)中出现的功能障碍。因此,研究人员对静态地和随时间变化的树突棘形态和密度的定量研究表现出极大的兴趣。此类研究通常是通过分析从各种显微镜模式(包括共聚焦激光扫描显微镜(CLSM)和双光子激光扫描显微镜(2PLSM))收集的数据来进行的;由于这些数据集的大小和复杂性,需要手动进行分析树突棘的形态变化非常耗时。在本文中,我们描述了用于树突状脊柱检测和测量的强大,自动化的方法,特别适合于大型神经元图像数据集的批处理。我们的工作大致分为三个相关部分。首先,我们专注于为从实验室发布的神经信息处理系统(称为Neuron Image Quantitator(NeuronIQ))开发的图像处理管道,该系统是用于自动树突脊柱检测,量化和分析的集成系统。其次,为进一步改善检测结果并解决现有的自动或半自动方法面临的相关“难题”(例如脊柱分离不连续),基于最大后验取向的马尔可夫随机的后处理分割算法字段(MAP-OMRF)进行了详细讨论。最后,我们将提出一种基于粒子过滤器的有效算法,该算法能够跟踪脊椎随时间的形态变化。论文的结尾将讨论可能的未来主题。

著录项

  • 作者

    Cheng, Jie.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号