首页> 外文学位 >PHOTON STIMULATED OXIDATION OF SILICON (SURFACE PHYSICS, SPECTROSCOPIC ANALYSIS, SEMICONDUCTOR, LASER OXIDATION, THERMAL).
【24h】

PHOTON STIMULATED OXIDATION OF SILICON (SURFACE PHYSICS, SPECTROSCOPIC ANALYSIS, SEMICONDUCTOR, LASER OXIDATION, THERMAL).

机译:光子激发的硅的氧化(表面物理,光谱分析,半导体,激光氧化,热)。

获取原文
获取原文并翻译 | 示例

摘要

This research employed visible (2.4-2.7 eV) and ultraviolet (4-6.4 eV) light to selectively probe atomic level process mechanisms possibly operative during silicon oxidation.;Within a given photon energy regime, light stimulation concurrent with typical dry thermal oxidation processing enhanced the oxide growth rate in direct proportion to the absorbed photon flux. Enhancement was driven by photon-generated excess electrons rather than holes, it increased with decreasing processing temperature, and was sensitive to silicon crystal orientation and sample thickness.;In the visible regime, optical and thermal enhancement components were differentiated. These depended on light power density level, shifting toward a thermal effect as that level increased. An oxidation rate constants analysis revealed numerous process kinetic features, particularly demonstrating how much more the photon flux stimulated parabolic compared to linear domain kinetics, plus how, surprisingly, silicon crystal orientation affected that parabolic domain activity. Pulsing the photon flux decreased enhancement somewhat over an equivalent flux of continuous stimulation, while spatially layering light-on versus light-off segments during thermal oxide growth affected the resulting enhancements.;In the ultraviolet regime, several photon energies were "spectroscopically" employed to reveal both electronic and molecular activity contributions to silicon oxidation kinetics. Normalized to the visible stimulation level, enhancement increased 10X for photon energies exciting electrons from the silicon to silicon dioxide conduction band, and by an additional 30X for higher photon energies which stimulated molecular oxygen dissociation.;Finally, an Electron-Active Oxidation Process Scenario (EAOPS) is presented. Its main supposition, evolving from key experimental results, is that collisional dissociation of molecular oxygen occurs near the oxidizing interface region in response to a hot electron flux emitted from the silicon out into the silicon dioxide. The kinetics associated with this reaction correlate well with thermal oxide growth. The EAOPS may help explain several currently unresolved though important phenomena associated with silicon oxidation such as very thin oxide growth and the charged-versus-neutral oxidant controversy. From a more general photochemical perspective, implications from this research readily carry over to photonic stimulations associated with other surface and interface reactions such as plasma processing and rapid thermal annealing.
机译:这项研究采用可见光(2.4-2.7 eV)和紫外光(4-6.4 eV)选择性探测可能在硅氧化过程中起作用的原子级过程机制。在给定的光子能量范围内,光刺激与典型的干式热氧化过程同时发生氧化物的生长速度与吸收的光子通量成正比。增强作用是由光子产生的过量电子而不是空穴驱动,它随加工温度的降低而增加,并且对硅晶体的取向和样品厚度敏感。这些取决于光功率密度水平,随着该水平的增加而朝着热效应转移。氧化速率常数分析揭示了许多过程动力学特征,特别是证明了与线性畴动力学相比,光子通量激发的抛物线多得多,以及令人惊讶的是,硅晶体取向如何影响该抛物线畴的活性。脉冲光子通量相对于连续刺激的等效通量在某种程度上降低了增强作用,而在热氧化物生长过程中空间上的开灯与关灯段的分层影响了所产生的增强作用。;在紫外线条件下,“光谱”地使用了几种光子能量来揭示了电子和分子活性对硅氧化动力学的贡献。归一化到可见光刺激水平,对于从硅到二氧化硅导带的电子激发光子能量,增强增加10倍,对于激发分子氧离解的更高光子能量,增强增加30倍;最后是电子活性氧化过程方案( EAOPS)。从关键的实验结果演变而来,其主要假设是,分子氧的碰撞解离发生在氧化界面区域附近,这是响应于从硅发射到二氧化硅中的热电子通量。与该反应有关的动力学与热氧化物的生长很好地相关。 EAOPS可能有助于解释与硅氧化有关的一些目前尚未解决但重要的现象,例如非常薄的氧化物生长以及带电与中性氧化剂的争议。从更一般的光化学观点来看,这项研究的意义很容易延续到与其他表面和界面反应(如等离子体处理和快速热退火)相关的光子刺激。

著录项

  • 作者

    YOUNG, EDWIN MARTIN.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 1986
  • 页码 384 p.
  • 总页数 384
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号