首页> 外文学位 >Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices.
【24h】

Growth and optical properties of CMOS-compatible silicon nanowires for photonic devices.

机译:用于光子器件的CMOS兼容硅纳米线的生长和光学特性。

获取原文
获取原文并翻译 | 示例

摘要

Silicon (Si) is the dominant semiconductor material in both the microelectronic and photovoltaic industries. Despite its poor optical properties, Si is simply too abundant and useful to be completely abandoned in either industry. Since the initial discovery of efficient room temperature photoluminescence (PL) from porous Si and the following discoveries of PL and time-resolved optical gain from Si nanocrystals (Si-nc) in SiO2, many groups have studied the feasibility of making Si-based, CMOS-compatible electroluminescent devices and electrically pumped lasers. These studies have shown that for Si-ne sizes below about 10 nm, PL can be attributed to radiative recombination of confined excitons and quantum efficiencies can reach 90%. PL peak energies are blue-shifted from the bulk Si band edge of 1.1 eV due to the quantum confinement effect and PL decay lifetimes are on mus timescales. However, many unanswered questions still exist about both the ease of carrier injection and various non-radiative and loss mechanisms that are present.;A potential alternative material system to porous Si and Si-nc is Si nanowires (SiNWs). In this thesis, I examine the optical properties of SiNWs with diameters in the range of 3-30 nm fabricated by a number of compound metal oxide semiconductor (CMOS) compatible fabrication techniques including Chemical Vapor Deposition on metal nanoparticle coated substrates, catalytic wet etching of bulk Si and top-down electron-beam lithographic patterning. Using thermal oxidation and etching, we can increase the degree of confinement in the SiNWs. I demonstrate PL peaked in the visible and near-infrared (NIR) wavelength ranges that is tunable by controlling the crystalline SiNW core diameter, which is measured with dark field and high-resolution transmission electron microscopy. PL decay lifetimes of the SiNWs are on the order of 50 mus after proper surface passivation, which suggest that the PL is indeed from confined carriers in the SiNW cores. Investigation of the non-radiative Auger recombination (AR) process suggests that for high carrier densities in excess of 1019 cm-3, the AR lifetime is about 80 ns and decreases with increasing carrier density. This SiNW AR lifetime is slower than the AR process in Si nanocrystals at similar carrier densities, but faster than the radiative process. I also study the light emission and absorption properties of single SiNWs patterned on Silicon-on-insulator (SOI) substrates and find that a large fraction of NWs is optically dead. Moreover, the active, light-emitting nanostructures exhibit PL blinking, a mechanism often seen for individual nanostructure light emitters. These results are essential to evaluating Si nanostructures as a feasible gain or lasing medium.;A second potential application for SiNWs is as a building block for low-cost, Si-based photovoltaics (PV). The market for thin-film PV, particularly organic thin-film PV, exists because it offers potential lower cost solutions for solar power versus bulk Si-based PV. However, many thin film technologies, while possessing superior optical absorption properties compared to Si, suffer from poor electronic transport properties. Here, I present a new Si-based PV design that combines the desirable optical properties of highly absorptive organic molecules and the high-mobility electronic properties of crystalline Si. This synergy is achieved by exploiting efficient Forster energy transfer from the light absorbing organic to SiNWs that enable current extraction. The energy transfer radius of a particular dye and bulk Si is found to be roughly 4 nm. Spectroscopic photocurrent experiments were performed on unpatterned SOI wafers as well as SiNWs patterned in SOI substrates and a significant photocurrent increase was seen in samples coated with organics versus uncoated samples. The photocurrent increase is seen in the wavelength range of the dye's absorption band, suggesting absorption of the dye and subsequent energy transfer to the Si plays a role. These results could pave the way for new low-cost, Si-based solar cell designs that leverage the strengths of the Si PV and microelectronics industries.
机译:硅(Si)是微电子和光伏行业中主要的半导体材料。尽管Si的光学性能很差,但它实在太丰富和有用,以至于不能在任何一个行业中完全丢弃。自从最初从多孔硅中发现有效的室温光致发光(PL)以及随后从SiO2中的Si纳米晶体(Si-nc)发现PL和时间分辨的光学增益以来,许多研究小组开始研究制造基于Si的可行性,兼容CMOS的电致发光器件和电泵浦激光器。这些研究表明,对于尺寸小于约10 nm的Si-ne,PL可以归因于受限激子的辐射复合,量子效率可以达到90%。由于量子限制效应,PL峰值能量从1.1 eV的整个Si带边缘发生了蓝移,PL衰减寿命处于mus时标上。然而,关于载流子注入的难易程度以及目前存在的各种非辐射和损耗机制,仍然存在许多悬而未决的问题。多孔纳米Si和Si-nc的潜在替代材料体系是Si纳米线(SiNWs)。在本文中,我研究了通过多种与化合物金属氧化物半导体(CMOS)兼容的制造技术制造的直径在3-30 nm范围内的SiNW的光学特性,包括在金属纳米颗粒涂覆的基板上进行化学气相沉积,体硅和自顶向下的电子束光刻构图。使用热氧化和蚀刻,我们可以增加SiNWs的封闭度。我展示了在可见光和近红外(NIR)波长范围内达到峰值的PL,这可以通过控制晶体SiNW核心直径来调节,该直径是通过暗场和高分辨率透射电子显微镜测量的。经过适当的表面钝化后,SiNWs的PL衰变寿命约为50 mus,这表明PL的确来自SiNW核中的受限载流子。对非辐射俄歇复合(AR)过程的研究表明,对于超过1019 cm-3的高载流子密度,AR寿命约为80 ns,并随着载流子密度的增加而降低。在相近的载流子密度下,此SiNW AR寿命比Si纳米晶体中的AR过程慢,但比辐射过程快。我还研究了在绝缘体上硅(SOI)衬底上构图的单个SiNW的发光和吸收特性,发现大部分NW在光学上是死的。此外,活性发光纳米结构表现出PL闪烁,这是单个纳米结构发光体经常看到的一种机制。这些结果对于评估作为可行增益或激光介质的Si纳米结构至关重要。SiNW的第二个潜在应用是作为低成本,基于Si的光伏材料(PV)的基础。之所以存在薄膜光伏市场,特别是有机薄膜光伏市场,是因为与块状硅基光伏相比,它为太阳能提供了潜在的低成本解决方案。但是,许多薄膜技术虽然具有比Si更好的光吸收性能,但是却具有较差的电子传输性能。在这里,我提出了一种新的基于Si的PV设计,该设计结合了高吸收性有机分子的理想光学特性和晶体Si的高迁移率电子特性。通过利用从吸收光的有机物到SiNW的有效Forster能量转移实现电流提取,可以实现这种协同作用。发现特定染料和块状Si的能量转移半径约为4nm。在未图案化的SOI晶圆以及在SOI基板中图案化的SiNW上进行了光谱光电流实验,并且与未涂布样品相比,涂有有机物的样品的光电流显着增加。在染料的吸收带的波长范围内可以看到光电流的增加,这表明染料的吸收以及随后向Si的能量转移起着作用。这些结果可为利用Si PV和微电子行业优势的新型低成本,基于Si的太阳能电池设计铺平道路。

著录项

  • 作者

    Guichard, Alex Richard.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号