首页> 外文学位 >THE DISTRIBUTION OF THE VALUES OF THE RIEMANN ZETA-FUNCTION.
【24h】

THE DISTRIBUTION OF THE VALUES OF THE RIEMANN ZETA-FUNCTION.

机译:RIEMANN ZETA函数值的分布。

获取原文
获取原文并翻译 | 示例

摘要

This thesis consists of two chapters devoted to the study of the distribution of the values of (zeta)(s), the Riemann's zeta-function.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;where T (--->) (INFIN), (sigma) (epsilon) {1/2,1} and F(z) belongs to a certain class of functions. In particular, we derive asymptotic formulae for the integrals:;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;Chapter one deals with the estimation of integrals of the form.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;where (alpha), h are positive and S(t) := (pi)('-1)Imlog(zeta)(1/2+it). These results have interesting consequences. For example, we proved that : for t (epsilon) {T,2T}, ((pi)loglogt)('-1/2)log(zeta)(1/2+it) has (0,1) Gaussian distribution in the complex plane. We obtained upper and lower estimates for the number of sign changes of S(t) in the interval {T,2T}. We also deduced some results about the distribution of the zeros of (zeta)(s) - a, where a is a fixed non-zero complex number.;Chapter two is a study of the extreme values of log(zeta)(s) inside the critical strip. By refining a method of Selberg, we were able to improve some (OMEGA)-results about log(zeta)(s). For instance, we proved that S(t) = (OMEGA)(,(+OR-)){(logt/loglogt)('1/3)}, S(,1)(t) = (OMEGA)(,-){(logt)('1/3)(loglogt)('-4/3)} and S(,1)(t) = (OMEGA)(,+){(logt)('1/2)(loglogt)('-9/4)}. The last one is particularly interesting because it has come very close to what we can obtain under the Riemann Hypothesis.;We also extend our study to the functions S(t+h) - S(t) and S(,1)(t+h) - S(,1)(t). We proved that.;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;(DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI).;for any fixed h in the interval {(logT)('-1), (loglogT)('-1)}.;Finally, we studied the extreme values of the function S((sigma),t) (being defined as (pi)('-1)Imlog(zeta)((sigma)+it)) and obtained some (OMEGA)-theorems for S((sigma),t) when (sigma) - 1/2 is a positive decreasing function of t.
机译:本文由两章组成,专门研究zemann函数的zeta值的分布。(图,表格或图形省略...请参见DAI);其中T( --->)(INFIN),σ(ε){1 / 2,1}和F(z)属于一类函数。特别是,我们导出积分的渐近公式:(省略了图表,表格或图形...请参见DAI);;第一章讨论了形式的积分的估计;;(省略了图表,表格或图形。请参阅DAI。);其中,(α),h为正,S(t):=(pi)('-1)Imlog(zeta)(1/2 + it)。这些结果产生了有趣的结果。例如,我们证明:对于t(ε){T,2T},((pi)loglogt)('-1/2)log(zeta)(1/2 + it)具有(0,1)高斯分布在复杂的飞机上。我们获得了区间{T,2T}中S(t)的符号变化次数的上下估计。我们还推导了有关(zeta)(a)零分布的一些结果,其中a是一个固定的非零复数。;第二章是对log(zeta)(s)极值的研究关键条内。通过完善Selberg的方法,我们能够改善一些有关log(zeta)的(OMEGA)结果。例如,我们证明S(t)=(OMEGA)(,(+ OR-)){(logt / loglogt)('1/3)},S(,1)(t)=(OMEGA)(, -){(logt)('1/3)(loglogt)('-4/3)}和S(,1)(t)=(OMEGA)(,+){(logt)('1/2) (loglogt)('-9/4)}。最后一个特别有趣,因为它已经非常接近我们在黎曼假设下可以获得的结果;我们还将研究扩展到函数S(t + h)-S(t)和S(,1)(t + h)-S(,1)(t)。我们证明了。;(省略了图表,表格或图形...请参见表)。;(了省略了图表,表格或图形...请参见表).;对于{{logT)(' -1),(loglogT)('-1)} .;最后,我们研究了函数S((sigma),t)的极值(定义为(pi)('-1)Imlog(zeta)( (σ+ it))并在σ-1/2为t的正递减函数时获得S(σ,t)的一些(OMEGA)定理。

著录项

  • 作者

    TSANG, KAI-MAN.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 1984
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号