首页> 外文学位 >Increasing solar energy conversion efficiency in hydrogenated amorphous silicon photovoltaic devices with plasmonic perfect meta - absorbers
【24h】

Increasing solar energy conversion efficiency in hydrogenated amorphous silicon photovoltaic devices with plasmonic perfect meta - absorbers

机译:使用等离子体完美的吸收剂提高氢化非晶硅光伏器件的太阳能转换效率

获取原文
获取原文并翻译 | 示例

摘要

Solar photovoltaic (PV) devices are an established, technically-viable and sustainable solution to society's energy needs, however, in order to reach mass deployment at the terawatt scale, further decreases in the levelized cost of electricity from solar are needed. This can be accomplished with thin-film PV technologies by increasing the conversion efficiency using sophisticated light management methods. This ensures absorption of the entire solar spectrum, while reducing semiconductor absorber layer thicknesses, which reduces deposition time, material use, embodied energy and greenhouse gas emissions, and economic costs. Recent advances in optics, particularly in plasmonics and nanophotonics provide new theoretical methods to improve the optical enhancement in thin-film PV. The project involved designing and fabricating a plasmonic perfect meta-absorber integrated with hydrogenated amorphous silicon (a-Si:H) solar PV device to exhibit broadband, polarization-independent absorption and wide angle response simultaneously in the solar spectrum.;First, recent advances in the use of plasmonic nanostructures forming metamaterials to improve absorption of light in thin-film solar PV devices is reviewed. Both theoretical and experimental work on multiple nanoscale geometries of plasmonic absorbers and PV materials shows that metallic nanostructures have a strong interaction with light, which enables unprecedented control over the propagation and the trapping of light in the absorber layer of thin-film PV device. Based on this, the geometry with the best potential for the proposed device is identified and used for device modeling and, finally the plasmonic enhanced n-i-p a-Si:H solar cell with top surface silver (Ag) metallic structure is proposed. In order for the plasmonic enhanced PV device to be commercialized the means of nanoparticle deposition must also be economical and scalable. In addition, the method to fabricate silver nanoparticles (AgNPs) must be at lower temperatures than those used in the fabrication process for a a-Si:H PV device (less than 180 °C). The results indicate the potential of multi-disperse self-assemble nanoparticles (SANPs) to achieve broadband resonant response for a-Si:H PV devices. Finally a plasmonic enhanced a-Si:H PV using multi-disperse SANPs is realized when AgNPs are integrated to the commercially fabricated nip-a-Si:H PV devices. The devices are characterized for both quantum efficiency and light I--V to evaluate the cell parameters (Jsc, Voc, FF and eta). Real--time spectroscopic ellipsometry (RTSE) data is used to model the device performance and the theoretical parameters are compared with the experimental data. Conclusions are drawn and recommendations and future work is suggested.
机译:太阳能光伏(PV)装置是一种已建立的,技术上可行的和可持续的解决方案,可以满足社会的能源需求,但是,为了达到兆瓦级的大规模部署,需要进一步降低来自太阳能的平准化成本。使用薄膜光伏技术可以通过使用复杂的光管理方法提高转换效率来实现。这确保了整个太阳光谱的吸收,同时减小了半导体吸收层的厚度,从而减少了沉积时间,材料使用,实现的能量和温室气体排放以及经济成本。光学方面的最新进展,特别是在等离子体和纳米光子学方面,为改善薄膜PV的光学性能提供了新的理论方法。该项目涉及设计和制造集成有氢化非晶硅(a-Si:H)太阳能PV器件的等离激元完美的超吸收体,以在太阳能光谱中同时展现宽带,与偏振无关的吸收和广角响应。审查了使用等离子纳米结构形成超材料来改善薄膜太阳能光伏器件中光的吸收的方法。对等离子吸收器和PV材料的多种纳米级几何结构的理论和实验工作均表明,金属纳米结构与光具有很强的相互作用,这使得对薄膜PV器件吸收器层中光的传播和俘获实现了空前的控制。基于此,确定了拟议器件具有最佳潜力的几何形状,并将其用于器件建模,最后提出了具有顶部表面银(Ag)金属结构的等离激元增强n-i-p a-Si:H太阳能电池。为了使等离子体增强PV器件商业化,纳米颗粒沉积的手段还必须是经济的和可扩展的。此外,制造银纳米粒子(AgNPs)的方法必须比用于a-Si:H PV器件制造过程中的温度更低的温度(低于180°C)。结果表明,多分散自组装纳米颗粒(SANP)可能实现a-Si:H PV器件的宽带谐振响应。最终,当将AgNPs集成到商业制造的nip-a-Si:H PV器件中时,就可以实现使用多分散SANP的等离子体增强a-Si:H PV。该器件具有量子效率和光I-V特性,可评估电池参数(Jsc,Voc,FF和eta)。实时光谱椭圆仪(RTSE)数据用于对设备性能进行建模,并将理论参数与实验数据进行比较。得出结论,并提出建议和今后的工作。

著录项

  • 作者

    Gwamuri, Jephias.;

  • 作者单位

    Michigan Technological University.;

  • 授予单位 Michigan Technological University.;
  • 学科 Materials science.;Engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号