首页> 外文学位 >MATHEMATICAL MODELLING AND CONTROL OF THE BLAST FURNACE PROCESS.
【24h】

MATHEMATICAL MODELLING AND CONTROL OF THE BLAST FURNACE PROCESS.

机译:高炉过程的数学建模与控制。

获取原文
获取原文并翻译 | 示例

摘要

The objectives of this study have been: to develop a mathematical model for the blast furnace process and to implement its steady state simulation on a digital computer; to extend it into a dynamic simulation model; and to formulate and propose a detailed strategy for the optimization of the blast furnace operation.; The first part of the study consists of the development of the mathematical model for the blast furnace process. For this purpose the process was divided into four major zones, each zone characterized by a different set of major reactions and process phenomena taking place within it. These were the stack, bosh, combustion zone and hearth.; A kinetic model was developed for the stack and bosh zones of the furnace. The hearth zone kinetic model was based upon the assumption that chemical equilibrium is attained or closely approached for the two major reactions taking place there, the desulphurization and silica reduction reactions. For the combustion zone model, complete conversion of the reactants to carbon monoxide and hydrogen was assumed while transferring energy to the molten materials descending from the bosh to the hearth.; The steady state simulation model was tested with data from two small capacity furnaces and two large capacity modern furnaces, with excellent results in each case thus confirming the validity of the basic model assumptions.; The steady state simulation model was extended into a dynamic simulation model and a preliminary program was written.; A detailed proposal for an optimization of the furnace operation at the bosh, combustion and hearth zone was formulated. The methodology for its possible implementation was selected and algorithms were developed and are presented in flow charts to facilitate this proposed work.
机译:这项研究的目的是:开发高炉过程的数学模型,并在数字计算机上实现其稳态仿真;将其扩展为动态仿真模型;并提出和提出优化高炉操作的详细策略。研究的第一部分包括高炉工艺数学模型的开发。为此,将过程分为四个主要区域,每个区域的特征是在其中发生的一组不同的主要反应和过程现象。这些是烟囱,炉膛,燃烧区和炉膛。建立了炉膛烟囱和炉膛区域的动力学模型。炉床区动力学模型是基于以下假设:脱硫和氧化硅还原反应在此处发生的两个主要反应达到或接近了化学平衡。对于燃烧区模型,假定将反应物完全转化为一氧化碳和氢气,同时将能量转移到从波什到炉膛下降的熔融物料中。用两个小容量炉和两个大容量现代炉的数据对稳态仿真模型进行了测试,每种情况下均具有优异的结果,从而证实了基本模型假设的有效性。将稳态仿真模型扩展为动态仿真模型,并编写了初步程序。提出了优化炉膛,燃烧区和炉床区的熔炉操作的详细建议。选择了可能的实现方法,并开发了算法,并在流程图中进行了介绍,以促进这项拟议的工作。

著录项

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1981
  • 页码 559 p.
  • 总页数 559
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号