首页> 外文学位 >Design and Fabrication of Ultrathin Plasmonic Nanostructures for Photovoltaics, Color Filtering and Biosensing.
【24h】

Design and Fabrication of Ultrathin Plasmonic Nanostructures for Photovoltaics, Color Filtering and Biosensing.

机译:用于光伏,彩色滤光片和生物传感的超薄等离子体纳米结构的设计和制造。

获取原文
获取原文并翻译 | 示例

摘要

Since the first report of the extraordinary optical transmission (EOT) phenomenon through periodic subwavelength hole arrays milled in optically-thick metal film, plasmonics have generated considerable interest because they enable new fundamental science and application technologies. Central to this phenomenon is the role of surface plasmon polaritons (SPPs), which are essentially electromagnetic waves trapped at the interface between a metal and a dielectric medium through their interactions with free electrons at the metal surface. The resonant interaction between the incident light and surface charge oscillations enables the concentration and manipulation of light at deep subwavelength scales, opening up exciting application opportunities ranging from subwavelength optics and optoelectronics to bio/chemical sensing. Furthermore, additional phenomena arise as the thickness of metal film decreases to be comparable to its skin depth (optically-thin), and the single-interface SPPs on the top and bottom metal surfaces combine to form two coupled SPPs, the long-range and short-range SPPs. Until now, much less work has focused on the study of surface plasmon resonances (SPRs) in ultrathin nanostructured metals.;This dissertation seeks to elucidate underlying physical mechanisms of SPRs in ultrathin nanostructured metals and tailor them for practical applications. Inspired by state-of-the-art advances on plasmonics in optically-thick nanostructured metals, one- (1D) and two-dimensional (2D) ultrathin plasmonic nanostructures are exploited for particular applications in three essential areas: photovoltaics, color filters and biosensors, achieving superior performances compared with their optically-thick counterparts. More specifically, this thesis is focused on systematic investigations on: (1) plasmonic transparent electrodes for organic photovoltaics and polarization-insensitive optical absorption enhancement in the active layer; (2) plasmonic subtractive color filters with record-high transmission efficiency and other unique properties; (3) rapid and highly-sensitive plasmonic bio-sensors employing ultrathin nanogratings. The successful development of these new plasmonic platforms have far-reaching impact on green energy technologies, next-generation displays and imagers, and label-free bio-sensing for point-of-care diagnostics.
机译:自从首次报道了通过在光学厚度的金属膜中研磨的周期性亚波长孔阵列引起的异常光传输(EOT)现象以来,等离激元技术引起了人们极大的兴趣,因为它们支持了新的基础科学和应用技术。这种现象的核心是表面等离振子极化子(SPPs)的作用,它本质上是电磁波,它们通过与金属表面的自由电子相互作用而被捕获在金属和介电介质之间的界面上。入射光与表面电荷振荡之间的共振相互作用使得能够在深亚波长范围内对光进行集中和操纵,从而开辟了激动人心的应用机会,从亚波长光学和光电技术到生物/化学传感。此外,当金属膜的厚度减小到与其趋肤深度(光学厚度)相当时,还会出现其他现象,并且顶部和底部金属表面上的单界面SPP结合在一起形成了两个耦合的SPP,即长距离的短程SPP。到现在为止,对超薄纳米结构金属中的表面等离子体激元共振(SPR)的研究还很少。本论文旨在阐明超薄纳米结构金属中SPR的潜在物理机理,并针对实际应用对其进行调整。受光学厚度纳米结构金属中等离子技术的最新进展的启发,一维(1D)和二维(2D)超薄等离子纳米结构被用于三个重要领域的特定应用:光伏,彩色滤光片和生物传感器与光学厚度较厚的同类产品相比,可实现卓越的性能。更具体地说,本论文集中于以下方面的系统研究:(1)用于有机光伏的等离激元透明电极和有源层中对偏振不敏感的光吸收增强; (2)具有创纪录的高传输效率和其他独特性能的等离激元消减彩色滤光片; (3)使用超薄纳米光栅的快速且高度灵敏的等离子体生物传感器。这些新的等离激元平台的成功开发对绿色能源技术,下一代显示器和成像仪以及用于即时诊断的无标签生物传感产生了深远的影响。

著录项

  • 作者

    Zeng, Beibei.;

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:51:41

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号