首页> 外文学位 >Biomolecular electrostatics with continuum models: A boundary integral implementation and applications to biosensors.
【24h】

Biomolecular electrostatics with continuum models: A boundary integral implementation and applications to biosensors.

机译:具有连续模型的生物分子静电学:一种边界积分的实现方法及其在生物传感器中的应用。

获取原文
获取原文并翻译 | 示例

摘要

The implicit-solvent model uses continuum electrostatic theory to represent the salt solution around dissolved biomolecules, leading to a coupled system of the Poisson-Boltzmann and Poisson equations. This thesis uses the implicit-solvent model to study solvation, binding and adsorption of proteins.;We developed an implicit-solvent model solver that uses the boundary element method (BEM), called PyGBe. BEM numerically solves integral equations along the biomolecule-solvent interface only, therefore, it does not need to discretize the entire domain. PyGBe accelerates the BEM with a treecode algorithm and runs on graphic processing units. We performed extensive verification and validation of the code, comparing it with experimental observations, analytical solutions, and other numerical tools. Our results suggest that a BEM approach is more appropriate than volumetric based methods, like finite-difference or finite-element, for high accuracy calculations. We also discussed the effect of features like solvent-filled cavities and Stern layers in the implicit-solvent model, and realized that they become relevant in binding energy calculations.;The application that drove this work was nano-scale biosensors---devices designed to detect biomolecules. Biosensors are built with a functionalized layer of ligand molecules, to which the target molecule binds when it is detected. With our code, we performed a study of the orientation of proteins near charged surfaces, and investigated the ideal conditions for ligand molecule adsorption. Using immunoglobulin G as a test case, we found out that low salt concentration in the solvent and high positive surface charge density leads to favorable orientations of the ligand molecule for biosensing applications.;We also studied the plasmonic response of localized surface plasmon resonance (LSPR) biosensors. LSPR biosensors monitor the plasmon resonance frequency of metallic nanoparticles, which shifts when a target molecule binds to a ligand molecule. Electrostatics is a valid approximation to the LSPR biosensor optical phenomenon in the long-wavelength limit, and BEM was able to reproduce the shift in the plasmon resonance frequency as proteins approach the nanoparticle.
机译:隐式溶剂模型使用连续静电学原理来表示溶解的生物分子周围的盐溶液,从而形成Poisson-Boltzmann和Poisson方程的耦合系统。本文使用隐式溶剂模型研究蛋白质的溶剂化,结合和吸附。我们开发了一种使用边界元方法(BEM)的隐式溶剂模型求解器,称为PyGBe。 BEM仅沿生物分子-溶剂界面对积分方程进行数值求解,因此,它无需离散化整个域。 PyGBe通过树码算法加速了BEM,并在图形处理单元上运行。我们对代码进行了广泛的验证和确认,并将其与实验观察结果,分析解决方案和其他数值工具进行了比较。我们的结果表明,对于高精度计算,BEM方法比基于体积的方法(如有限差分或有限元素)更合适。我们还讨论了隐式溶剂模型中溶剂填充型腔和Stern层等功能的影响,并意识到它们在结合能计算中变得很重要。;推动这项工作的应用是纳米级生物传感器-设计的设备检测生物分子。生物传感器是由配体分子的功能化层构建而成的,目标分子在被检测到时就会与之结合。利用我们的代码,我们对带电表面附近蛋白质的取向进行了研究,并研究了配体分子吸附的理想条件。使用免疫球蛋白G作为测试案例,我们发现溶剂中的低盐浓度和高的正表面电荷密度导致配体分子在生物传感应用中具有良好的取向。;我们还研究了局部表面等离子体激元共振(LSPR)的等离子体响应)生物传感器。 LSPR生物传感器监测金属纳米粒子的等离振子共振频率,当目标分子与配体分子结合时,该共振频率发生变化。在长波长范围内,静电学是LSPR生物传感器光学现象的有效近似,随着蛋白质接近纳米粒子,BEM能够重现等离子体共振频率的变化。

著录项

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Biophysics General.;Computer Science.;Mathematics.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号