首页> 外文学位 >Modeling of gas turbine - solid oxide fuel cell systems for combined propulsion and power on aircraft.
【24h】

Modeling of gas turbine - solid oxide fuel cell systems for combined propulsion and power on aircraft.

机译:燃气轮机-固体氧化物燃料电池系统的建模,用于飞机上的联合推进和动力。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates the use of gas turbine (GT) engine integrated solid oxide fuel cells (SOFCs) to reduce fuel burn in aircraft with large electrical loads like sensor-laden unmanned air vehicles (UAVs). The concept offers a number of advantages: the GT absorbs many SOFC balance of plant functions (supplying fuel, air, and heat to the fuel cell) thereby reducing the number of components in the system; the GT supplies fuel and pressurized air that significantly increases SOFC performance; heat and unreacted fuel from the SOFC are recaptured by the GT cycle offsetting system-level losses; good transient response of the GT cycle compensates for poor transient response of the SOFC. The net result is a system that can supply more electrical power more efficiently than comparable engine-generator systems with only modest (<10%) decrease in power density. Thermodynamic models of SOFCs, catalytic partial oxidation (CPOx) reactors, and three GT engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed that account for equilibrium gas phase and electrochemical reaction, pressure losses, and heat losses in ways that capture `down-the-channel' effects (a level of fidelity necessary for making meaningful performance, mass, and volume estimates). Models are created in a NASA-developed environment called Numerical Propulsion System Simulation (NPSS). A sensitivity analysis identifies important design parameters and translates uncertainties in model parameters into uncertainties in overall performance. GT-SOFC integrations reduce fuel burn 3-4% in 50 kW systems on 35 kN rated engines (all types) with overall uncertainty <1%. Reductions of 15-20% are possible at the 200 kW power level. GT-SOFCs are also able to provide more electric power (factors >3 in some cases) than generator-based systems before encountering turbine inlet temperature limits. Aerodynamic drag effects of engine-airframe integration are by far the most important limiter of the combined propulsion/electrical generation concept. However, up to 100-200 kW can be produced in a bypass ratio = 8, overall pressure ratio = 40 turbofan with little or no drag penalty. This study shows that it is possible to create cooperatively integrated GT-SOFC systems for combined propulsion and power with better overall performance than stand-alone components.
机译:本文研究了燃气轮机(GT)发动机集成的固体氧化物燃料电池(SOFC)的使用,以减少载有传感器负载的无人机(UAV)等具有较大电气负载的飞机的燃油消耗。该概念具有许多优点:GT吸收了工厂功能的许多SOFC平衡(向燃料电池供应燃料,空气和热量),从而减少了系统中的组件数量。 GT提供的燃料和压缩空气大大提高了SOFC的性能; GT循环可抵消SOFC产生的热量和未反应的燃料,从而抵消了系统级的损失; GT循环的良好瞬态响应可补偿SOFC的瞬态响应较差。最终结果是该系统比功率类似的发动机-发电机系统更有效地提供更多的电力,而功率密度仅略有下降(<10%)。开发了SOFC,催化部分氧化(CPOx)反应器和三种GT发动机类型(涡轮喷气发动机,组合式排气涡轮风扇,分离式排气涡轮风扇)的热力学模型,这些模型通过以下方式考虑了平衡的气相和电化学反应,压力损失和热量损失:捕获“渠道下”的影响(进行有意义的性能,质量和体积估计所必需的保真度)。在NASA开发的称为数值推进系统仿真(NPSS)的环境中创建模型。敏感性分析可识别重要的设计参数,并将模型参数的不确定性转化为整体性能的不确定性。在35 kN额定发动机(所有类型)上,GT-SOFC集成将50 kW系统中的燃油消耗降低3-4%,总不确定度<1%。在200 kW的功率水平下可以降低15-20%。在遇到涡轮机入口温度限制之前,GT-SOFC还能够提供比基于发电机的系统更多的电功率(在某些情况下,系数> 3)。迄今为止,发动机-机身集成的气动阻力效应是推进/发电组合概念的最重要限制因素。但是,旁路比= 8时,可以产生高达100-200 kW的功率,总压力比= 40涡轮风扇,几乎没有阻力损失。这项研究表明,可以创建用于联合推进和动力的协作集成GT-SOFC系统,其综合性能要比独立组件好。

著录项

  • 作者

    Waters, Daniel Francis.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Aerospace engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 288 p.
  • 总页数 288
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号