首页> 外文学位 >Multi-factor models to resolve growth responses in vitro and during subsequent greenhouse growth for turmeric (Curcuma longa L.).
【24h】

Multi-factor models to resolve growth responses in vitro and during subsequent greenhouse growth for turmeric (Curcuma longa L.).

机译:多因素模型可解决姜黄(Curcuma longa L.)的体外和随后温室生长过程中的生长反应。

获取原文
获取原文并翻译 | 示例

摘要

Plant media has been developed over the last six decades, yet, there has not been medium optimized for microplant greenhouse growth, which may be important for producing chemical compounds and preparing transplants for success in the field. A series of multi-factor optimization experiments were conducted on turmeric (Curcuma longa L., genotype L 35-1) to identify the effects of mineral nutrition and plant density in vitro on laboratory and greenhouse production. The first experiment optimized PO43-, Ca2+, Mg2+, and KNO3 for five-months growth in bioreactors with periodic supplementation of sucrose solution +/- nutrients. Phosphorus (6.25 mM) increased sucrose supplement and rhizome dry biomass. However KNO3 (60 mM) increased water supplement and fresh plant biomass. Two optimal media were developed for plant multiplication based on in vitro plant density, whereas high plant density required 9 mM Ca2+ and 60 mM KNO3 and low plant density required 3 mM Ca2+ and 20 mM KNO3. Bioreactor plants were transferred to the greenhouse for 6-months and fertilized with either high- or low-input fertilizer. Large bioreactor plants developed with 6.25 mM PO43-, but in the greenhouse plants had more offsets and grew larger with receiving less than 6.25 mM PO43- and less than 6 mM Ca2+ media. Mineral interactions affected curcuminoids concentration in greenhouse finished dry rhizomes regardless of plant density under high-input fertilizer. Curcumin concentration increased with low-input fertilizer 6 buds/vessel and 6.25 mM PO43-. Another mineral experiment was conducted on genotypes L35-1 and L22-5 and compared various optimized media to an MS control. Regardless of genotype, 5 mM NH4+, moderate KNO3, and 2 mM Ca2+ yielded plants with longest shoots and largest leaves after a 21d acclimatization period. Results concluded that high plant density combined with proper mineral nutrition yielded more plants in vitro that continued to grow better during subsequent greenhouse growth. There was consensus across experiments of optimal media for greenhouse responses that differed from what was optimal in vitro. Optimizing in vitro medium for turmeric greenhouse growth can be used as a model to identify optimum medium for other crops, so laboratories can create more value for their customers.
机译:在过去的六十年中,已经开发了植物培养基,但是,还没有针对微植物温室生长进行优化的培养基,这对于生产化合物和为在该领域取得成功做好准备。在姜黄上进行了一系列的多因素优化实验(姜黄,基因型L 35-1),以鉴定矿物质营养和植物密度在体外对实验室和温室生产的影响。第一个实验优化了PO43-,Ca2 +,Mg2 +和KNO3在生物反应器中五个月的生长,并定期补充蔗糖溶液+/-营养素。磷(6.25 mM)增加了蔗糖补充量和根茎干生物量。但是,硝酸钾(60毫米)增加了补水量和新鲜植物的生物量。根据体外植物密度,开发了两种用于植物繁殖的最佳培养基,而高植物密度需要9 mM Ca2 +和60 mM KNO3,低植物密度需要3 mM Ca2 +和20 mM KNO3。将生物反应器植物转移到温室中六个月,并用高输入或低输入肥料施肥。大型生物反应器植物用6.25 mM PO43-发育,但是在温室中,当接收不到6.25 mM PO43-和6 mM Ca2 +培养基时,其偏移更大,并且生长更大。矿物相互作用会影响温室成品干根茎中姜黄素的浓度,而与高输入肥料下的植物密度无关。姜黄素浓度随低投入肥料6芽/容器和6.25 mM PO43-的增加而增加。对基因型L35-1和L22-5进行了另一个矿物实验,并将各种优化的培养基与MS对照进行了比较。无论基因型如何,经过21天的适应期后,5 mM NH4 +,中等KNO3和2 mM Ca2 +产生的芽最长,叶片最大的植物。结果得出结论,高植物密度与适当的矿物质营养相结合,使更多的植物在体外生长,并在随后的温室生长过程中继续生长。温室效应的最佳培养基实验之间的共识与体外最佳培养基不同。优化姜黄温室生长的体外培养基可以用作确定其他农作物最佳培养基的模型,因此实验室可以为其客户创造更多价值。

著录项

  • 作者

    El-Hawaz, Rabia Fawzi.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Horticulture.;Botany.;Analytical chemistry.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 122 p.
  • 总页数 122
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号