首页> 外文学位 >Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets.
【24h】

Direct Numerical Simulations of Turbulent Autoigniting Hydrogen Jets.

机译:湍流自燃氢射流的直接数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Autoignition is an important phenomenon and a tool in the design of combustion engines. To study autoignition in a canonical form a direct numerical simulation of a turbulent autoigniting hydrogen jet in vitiated coflow conditions at a jet Reynolds number of 10,000 is performed. A detailed chemical mechanism for hydrogen-air combustion and non-unity Lewis numbers for species transport is used. Realistic inlet conditions are prescribed by obtaining the velocity eld from a fully developed turbulent pipe flow simulation.;To perform this simulation a scalable modular density based method for direct numerical simulation (DNS) and large eddy simulation (LES) of compressible reacting flows is developed. The algorithm performs explicit time advancement of transport variables on structured grids. An iterative semi-implicit time advancement is developed for the chemical source terms to alleviate the chemical stiffness of detailed mechanisms. The algorithm is also extended from a Cartesian grid to a cylindrical coordinate system which introduces a singularity at the pole r = 0 where terms with a factor 1/r can be ill-defined. There are several approaches to eliminate this pole singularity and finite volume methods can bypass this issue by not storing or computing data at the pole. All methods however face a very restrictive time step when using a explicit time advancement scheme in the azimuthal direction (;The resulting flame structure is found to be similar to a turbulent diusion flame but stabilized by autoignition at the flame base. Mass-fraction of the hydroperoxyl radical, HO2, peaks in magnitude upstream of the flame's stabilization point indicating autoignition. A flame structure similar to a triple-flame, with a lean premixed flame and a rich premixed flame flanking a thick diffusion flame is identified by the flame index. Radicals formed in the shear layer ahead of ignition and oxygen from the coflow do not get fully consumed by the flame and are transported along the edges of the flame brush into the core of the jet. Ignition delays from a well-stirred reactor model and an autoigniting diffusion flame model are able predict the lift-off height of the turbulent flame. The local entrainment rate was observed to increase with axial distance until the flame stabilization point and then decrease downstream. Data from probes placed along the flame reveals a highly turbulent flow field with variable composition at a given location. In general however, it is observed that the turbulent kinetic energy (TKE) is very high in cold fuel rich mixtures and is lowest in hot fuel lean mixtures. Autoignition occurs at the most-reactive hot and lean mixture fractions where the TKE is the lowest.
机译:自燃是内燃机设计中的重要现象和工具。为了以规范形式研究自燃,对湍流自燃氢气射流在雷诺数为10,000的气流同流条件下进行了直接数值模拟。使用了氢气-空气燃烧的详细化学机理和物种运输的非统一Lewis数。通过从完全开发的湍流管流模拟中获得速度场来规定实际的进气条件。;为执行此模拟,开发了可压缩的反应流的直接数值模拟(DNS)和大涡流模拟(LES)的基于可扩展模块密度的方法。该算法在结构化网格上执行运输变量的显式时间提前。针对化学来源术语开发了迭代半隐式时间提前量,以减轻详细机制的化学刚度。该算法也从笛卡尔网格扩展到圆柱坐标系,该圆柱坐标系在极点r = 0处引入奇异性,其中1 / r项不明确。有几种方法可以消除这种极点奇异性,而有限体积方法可以通过不在极点上存储或计算数据来绕过此问题。但是,当在方位角方向上使用明确的时间提前方案时,所有方法都面临着非常严格的时间步长;(发现所形成的火焰结构类似于湍流的扩散火焰,但通过火焰底部的自燃使其稳定了。)氢稳定的氢氧根自由基HO2在火焰稳定点上游出现一个峰值,表示自燃;通过火焰指数确定了类似于三重火焰,稀薄的预混火焰和浓密的预混火焰和浓密扩散火焰的火焰结构。点火之前在剪切层中形成的气体和来自同流的氧气没有被火焰完全消耗,而是沿着火焰刷的边缘传输到射流的中心,由于良好搅拌的反应堆模型和自燃,点火延迟扩散火焰模型能够预测湍流火焰的上升高度,观察到局部夹带率随轴向距离的增加而增大阿米稳定点,然后向下游降低。沿火焰放置的探针的数据显示出在给定位置具有高度湍流的流场,其组成可变。然而,一般而言,观察到在富含冷燃料的混合物中湍动能(TKE)很高,而在稀热燃料的混合物中湍流动能(TKE)最低。自燃发生在反应性最高的热和稀混合气馏分,其中TKE最低。

著录项

  • 作者

    Asaithambi, Rajapandiyan.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号