首页> 外文学位 >A Fundamental Study of Transient Processes in Microscale Flow Boiling Heat Transfer.
【24h】

A Fundamental Study of Transient Processes in Microscale Flow Boiling Heat Transfer.

机译:微尺度沸腾传热中瞬态过程的基础研究。

获取原文
获取原文并翻译 | 示例

摘要

Electronics cooling is at the forefront of the design of the next generation of commercial and military electronics. Several developments in the design of electronics have created the need for an unprecedented level of integration between the electronic and thermal components. Flow boiling in microchannels offers significant advantages over other competing technologies to address the grand scale of challenges involved with the advent of 3-D chip stacks. Practical implementations are limited by the lack of fundamental knowledge controlling the heat transfer processes at confined length scales. Transient local wall temperature and heat transfer coefficient measurements can be used to address several of these gaps in contemporary literature.;In this work, experimental methods, data processing technique, and results along this vein are presented. With a new microdevice architecture, synchronized temperature and high-speed camera footage several interactions encountered in flow boiling are examined.;Using a computational workflow to decouple the conjugated conduction-convection effects and account for the transient heat loss (or gain), the local and transient heat transfer coefficient was measured for different flow regimes. Using a non-dimensional number to describe the extent of damping exerted by the substrate, detailed considerations of sensor design for transient studies are presented. Based on these fundamental heat transfer considerations spatiotemporal bounds are identified that allow for a continuous estimate of the transient heat transfer coefficient. These estimates of the spatiotemporally resolved heat transfer coefficient are compared to the time averaged considerations for the thin-film evaporation process accompanying slug flow.
机译:电子冷却是下一代商业和军事电子设计的最前沿。电子产品设计方面的一些发展产生了对电子和热敏元件之间前所未有的集成度的需求。微通道中的流沸腾技术提供了优于其他竞争技术的显着优势,可以解决3D芯片堆栈问世所带来的巨大挑战。由于缺乏在有限的长度范围内控制传热过程的基本知识,实际的实施受到了限制。瞬态局部壁温和传热系数的测量可用于解决当代文献中的这些空白。在这项工作中,将介绍沿此脉络的实验方法,数据处理技术和结果。使用新的微设备架构,同步的温度和高速摄像机镜头,检查了流沸腾过程中遇到的几种相互作用。;使用计算工作流程将共轭对流效应解耦并考虑瞬态热损失(或增益),局部并测量了不同流动状态下的瞬态传热系数。使用无量纲数来描述基板施加的阻尼程度,提出了用于瞬态研究的传感器设计的详细考虑。基于这些基本的传热考虑因素,确定了时空界限,可以连续估算瞬态传热系数。将时空分解的传热系数的这些估计与随团状流动而产生的薄膜蒸发过程的时间平均考虑因素进行比较。

著录项

  • 作者

    Rao, Sameer Raghavendra.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 146 p.
  • 总页数 146
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号