首页> 外文学位 >Type-II Antimonide-based Superlattices for High Performance Infrared Detectors and Imagers.
【24h】

Type-II Antimonide-based Superlattices for High Performance Infrared Detectors and Imagers.

机译:基于II型锑化物的超晶格,用于高性能红外探测器和成像仪。

获取原文
获取原文并翻译 | 示例

摘要

Antimonide-based type-II superlattices have demonstrated unique properties that are extremely desirable for making high-performance infrared photodetectors and focal plane arrays (FPAs). However, this technology still needs to be further developed to be able to substitute existing technologies, mainly Mercury-Cadmium-Telluride compounds (HgCdTe). In mid-wavelength infrared (MWIR), high operating temperature is the ultimate goal which needs more investigation in order to find a reliable passivation technique, further improvement of the electrical performance, and the reduction of cost.;The focus of this work is, partially, to demonstrate that Type-II InAs/GaSb superlattices can perform high-quality infrared imaging in mid-wavelength infrared regime. Theoretically, photodetectors and focal plane arrays (FPAs) based on this technology could be operated at higher temperatures, with lower dark currents than the leading HgCdTe platform. However, such performances have not been demonstrated yet. This effort will focus on the design, growth, and measurement of MWIR photodetectors and FPAs with performance similar to existing infrared cameras.;To raise the operating temperature of MWIR photodetectors, the tunneling barrier was re-designed along with reducing the concentration of minority carriers in the active region by increasing the doping level and optimizing the doping technique and proper use of a capping layer resulted in 5°C increase in maximum temperature for background limited performance to 195 K.;FPAs were also fabricated, using the new photodetector design, to demonstrate a camera that presented similar performance to HgCdTe and that could be operated up to room temperature. At 81K, the camera could detect temperature differences as low as 10 mK for an integration time shorter than 8 ms using F/2.3 optics. It demonstrated an operability of 99.5% at this operating temperature.;The second part of this work, we addressed the problem of low QE in LWIR InAs/InAs1-xSbx type-II superlattice-based photodetectors which are expected to have superior performance compare to the conventional InAs/GaSb type-II superlattice-based photodetectors. We proposed new superlattice design to overcome this problem which resulted in the design, growth, and characterization of a high-performance LWIR nBn photodetector based on InAs/InAs 1-xSbx T2SLs on GaSb substrate. The device exhibited a 50% cut-off wavelength of 10 um at 77 K. At the peak responsivity, the photodetector exhibited QE and responsivity of 54% and 3.47 A/W, respectively, under front-side illumination and without any AR coating. At -90 mV, the device exhibited dark current density and RxA of 4.4x10-4 A/cm 2 and 119 Ohm•cm2, respectively, at 77 K. At 7.9 microm, the device exhibited a saturated dark current shot noise limited specific detectivity of 2.8x1011 cm•√ Hz/W at 77 K which stays constant over a broad range of wavelengths and applied bias voltages.;The third generation of infrared cameras is based on multi-band imaging concept in order to improve the recognition capabilities of the imager. Therefore, we dedicated the third part of this work to demonstration of the design, growth, and characterization of a high-performance bias-selectable dual-band MWIR-LWIR photodetectors based on InAs/InAs1-xSbx T2SLs. The MWIR channel achieved a saturated quantum efficiency of 45% at peak responsivity under front-side illumination and without any AR coating. At 100 mV, the device exhibited dark current density of 1x10-7 A/cm 2 providing a specific detectivity of 8.2x1012 cm•√Hz/W at 77 K. The LWIR channel has its saturated QE of ~40%, a dark current density of 5.7x10-4 A/cm 2 at -150 mV, exhibiting a specific detectivity value of 1.64x10 11 cm•√Hz/W which stays constant over a broad range of wavelengths.;Finally, we also demonstrated a high-performance SWIR photodetector based on InAs/InAs1-xSbx/AlAs1-xSbx type-II superlattices. The device exhibited 50% cut-off wavelengths of ~1.7 and ~1.8 microm at 200 and 300 K, respectively. The device achieved saturated quantum efficiency values of 36% and 37% at 200 and 300 K, respectively, under front-side illumination and without any AR coating. At 200 K, the device exhibited a dark current density of 1.3x10-8 A/cm2 under -50 mV applied bias providing a specific detectivity of 5.66x10 12 cm•√Hz/W. At 300 K, the device dark current density reaches to 9.6x10-5 A/cm2 under -50 mV bias that provides a specific detectivity of 6.45x10 10 cm•√Hz/W. In addition to the demonstration of high performance MWIR photodetectors and FPA based on InAs/GaSb type-II superlattices, this work also has made it possible for the InAs/InAs 1-xSbx type-II superlattices to become a strong candidate for making high performance multi-spectral infrared imagers and a possible replacement for the current state-of-the-art technologies like InAs/GaSb T2SLs.
机译:基于锑化物的II型超晶格已展示出独特的特性,这些特性对于制造高性能红外光电探测器和焦平面阵列(FPA)极为理想。但是,仍需要进一步开发该技术以替代现有技术,主要是汞-镉-碲化物(HgCdTe)。在中波长红外(MWIR)中,较高的工作温度是最终目标,需要进一步研究以找到可靠的钝化技术,进一步改善电性能并降低成本。部分地证明II型InAs / GaSb超晶格可以在中波长红外条件下执行高质量的红外成像。从理论上讲,基于该技术的光电探测器和焦平面阵列(FPA)可以在更高的温度下运行,并且暗电流低于领先的HgCdTe平台。但是,这种性能尚未得到证明。这项工作将集中在性能,性能与现有红外摄像头相似的MWIR光电探测器和FPA的设计,增长和测量上;为了提高MWIR光电探测器的工作温度,重新设计了隧道势垒并降低了少数载流子的浓度通过增加掺杂水平和优化掺杂技术并适当使用覆盖层,在有源区中将背景温度限制为195 K的最高温度提高了5°C;还使用新的光电探测器设计制造了FPA,展示了一种与HgCdTe具有类似性能并且可以在室温下使用的相机。在81K下,使用F / 2.3光学元件,摄像机可以检测到低至10 mK的温差,而积分时间短于8 ms。在此工作温度下,它具有99.5%的可操作性。;第二部分,我们解决了基于LWIR InAs / InAs1-xSbx II型超晶格II型光探测器的QE低的问题,与之相比,该探测器具有更高的性能。常规的基于InAs / GaSb的II型超晶格光电探测器。我们提出了新的超晶格设计来克服这一问题,从而导致了基于GaSb衬底上的InAs / InAs 1-xSbx T2SLs的高性能LWIR nBn光电探测器的设计,生长和表征。该器件在77 K时表现出10 um的50%截止波长。在峰值响应度下,光电探测器在正面照明下且没有任何AR涂层的情况下,其QE和响应度分别为54%和3.47 A / W。在-90 mV时,该器件在77 K时表现出的暗电流密度和RxA分别为4.4x10-4 A / cm 2和119 Ohm•cm2。在7.9 microm时,该器件表现出的饱和暗电流散粒噪声限制了特定的检测率在8.7 K时为2.8x1011 cm•√Hz / W,在宽范围的波长和施加的偏置电压下保持恒定。第三代红外摄像机基于多波段成像概念,以提高图像的识别能力。成像仪。因此,我们将这项工作的第三部分专门用于演示基于InAs / InAs1-xSbx T2SL的高性能偏置可选双波段MWIR-LWIR光电探测器的设计,扩展和特性。 MWIR通道在正面照明下且没有任何增透膜的情况下,在峰值响应度下达到了45%的饱和量子效率。在100 mV时,该器件的暗电流密度为1x10-7 A / cm 2,在77 K时提供的比探测率为8.2x1012 cm•√Hz/ W。LWIR通道的饱和QE为〜40%,暗电流密度在-150 mV时为5.7x10-4 A / cm 2,表现出1.64x10 11 cm•√Hz/ W的比探测值,在很宽的波长范围内保持恒定。最后,我们还展示了高性能基于InAs / InAs1-xSbx / AlAs1-xSbx II型超晶格的SWIR光电探测器。该器件在200 K和300 K时分别具有〜1.7和〜1.8微米的50%截止波长。在正面照明和没有任何增透膜的情况下,该器件在200 K和300 K下的饱和量子效率分别达到36%和37%。在200 K时,该器件在-50 mV施加的偏置下表现出1.3x10-8 A / cm2的暗电流密度,提供了5.66x10 12 cm•√Hz/ W的比检测率。在300 K时,器件的暗电流密度在-50 mV偏置下达到9.6x10-5 A / cm2,从而提供了6.45x10 10 cm•√Hz/ W的比检测率。除了展示基于InAs / GaSb II型超晶格的高性能MWIR光电探测器和FPA之外,这项工作还使InAs / InAs 1-xSbx II型超晶格成为实现高性能的强大候选者多光谱红外成像仪,并可能替代InAs / GaSb T2SLs等当前最先进的技术。

著录项

  • 作者

    Haddadi, Abbas.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Electrical engineering.;Engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 359 p.
  • 总页数 359
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号