首页> 外文学位 >Non Equilibrium Current Activated Pressure Assisted Densification Processing of Aluminum Nitride Doped with Rare Earths for Laser Applications.
【24h】

Non Equilibrium Current Activated Pressure Assisted Densification Processing of Aluminum Nitride Doped with Rare Earths for Laser Applications.

机译:激光应用掺杂稀土的氮化铝的非平衡电流激活压力辅助致密化处理。

获取原文
获取原文并翻译 | 示例

摘要

The performance of Solid State lasers and solid state lighting have long suffered from thermal management difficulties. Thermal management continues to be one of the major challenges in the development of high powered light sources such as solid state lasers. In particular, the low thermal conductivity of standard photoluminescent (PL) host materials limits the overall power output and/or duty cycle. Overheating in laser host materials can lead to performance issues and ultimately irreparable failure. One significant problem is the materials ability to tolerate thermal shock and the stresses caused by thermal gradients. A material with high thermal conductivity will be able to dissipate more heat while maintaining a smaller thermal gradient, thus reducing the degradation of performance from thermal effects such as thermal lensing and thermally induced fracture. Aluminum Nitride's wide band gap and high thermal conductivity offer the potential to improve some of these problems. In this dissertation the author presents research conducted on the processing and doping of Aluminum Nitride for photoluminescent and solid state laser applications. Areas discussed include, non equilibrium CAPAD processing of doped and undoped AlN, doping of AlN for visible and infrared emission and thermomechanical properties of doped AlN.
机译:固态激光器和固态照明的性能长期遭受热管理困难。在固态激光器等高功率光源的开发中,热管理仍然是主要挑战之一。特别地,标准光致发光(PL)主体材料的低热导率限制了整体功率输出和/或占空比。激光主体材料的过热可能导致性能问题,并最终导致无法修复的故障。一个重要的问题是材料承受热冲击的能力以及由热梯度引起的应力。具有高导热率的材料将能够散发更多的热量,同时保持较小的热梯度,从而减少由于热效应(例如热透镜和热致断裂)而导致的性能下降。氮化铝的宽带隙和高导热性为改善其中一些问题提供了潜力。在这篇论文中,作者提出了在用于光致发光和固态激光器应用中的氮化铝的处理和掺杂方面的研究。讨论的领域包括掺杂和未掺杂的AlN的非平衡CAPAD处理,用于可见光和红外光的AlN掺杂以及掺杂AlN的热机械性能。

著录项

  • 作者

    Wieg, Andrew Thomas.;

  • 作者单位

    University of California, Riverside.;

  • 授予单位 University of California, Riverside.;
  • 学科 Materials science.;Mechanical engineering.;Nanotechnology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 86 p.
  • 总页数 86
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号