首页> 外文学位 >Ablation of cardiac tissue with nanosecond pulsed electric fields: Experiments and numerical simulations.
【24h】

Ablation of cardiac tissue with nanosecond pulsed electric fields: Experiments and numerical simulations.

机译:纳秒脉冲电场消融心脏组织:实验和数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

Cardiac ablation for the treatment of cardiac arrhythmia is usually performed by heating tissue with radio-frequency (RF) electrical currents to create conduction-blocking lesions in order to stop the propagation of electrical waves. Problems associated with RF ablation are recurrence of arrhythmias after successful treatments, tissue loss beyond the targeted tissue, long duration of the ablation procedure, and thermal side effects including thrombus formation that may lead to stroke. Here, we propose a new, non-thermal ablation method using nanosecond pulsed electric fields (nsPEFs) with better-controlled ablation volume, shorter procedure time, and no thermal side effects. We demonstrate that we can create non-conductive transmural lesions using different electrode configurations. We also develop a numerical model of nsPEF ablation, which allows us to estimate the critical electric field which leads in cardiac tissue and helps to provide a guideline for clinical tissue ablation.;Our experimental model is a Langendorff-perfused rabbit heart. The heart is placed in a life-support system, and optical mapping is performed to study its electrical activity. We further developed the capability to apply short sequences of nanosecond pulses to tissue through pairs of customized electrodes. In order to characterize the 3D geometry of an ablated volume, we have adopted propidium iodide and TTC staining in conjunction with tissue sectioning. Our results obtained by optical mapping data and PI/TTC stained tissue show that fully transmural lesions can be obtained faster and with better control over the ablated volume than in conventional (RF) ablation, in the absence of thermal side effects.;In order to aid nsPEF ablation planning, we used the COMSOL finite element software to create a model of the electric field distribution in cardiac tissue, which has a complex anisotropic architecture, for different electrode configurations. The experimental and numerical results are consistent and suggest a critical electric field strength of 3kV/cm for the death of cardiac tissue. This threshold obtained by the numerical model can function as a guideline for future clinical nsPEF treatment of atrial fibrillation.;In summary, we have developed nsPEF ablation for the treatment of cardiac arrhythmia to provide better control over the ablated volume than conventional (RF) ablation, to reduce procedure time, and to avoid thermal side effects. Our ultimate goal is to bring this technology to the clinical practice.
机译:通常通过用射频(RF)电流加热组织以产生传导阻滞性损伤,从而停止电波的传播来执行用于治疗心律不齐的心脏消融术。与射频消融相关的问题是成功治疗后心律失常的复发,超出目标组织的组织损失,消融过程持续时间长以及热副作用,包括可能导致卒中的血栓形成。在这里,我们提出了一种新的非热消融方法,该方法使用纳秒级脉冲电场(nsPEF),具有更好的控制消融量,更短的处理时间且无热副作用。我们证明了我们可以使用不同的电极配置来创建非传导性透壁病变。我们还开发了nsPEF消融的数值模型,它使我们能够估计导致心脏组织的临界电场,并有助于为临床组织消融提供指导。我们的实验模型是用Langendorff灌注的兔心脏。心脏被放置在生命支持系统中,并进行光学映射以研究其电活动。我们进一步开发了通过定制电极对将短纳秒脉冲序列施加到组织的功能。为了表征消融体积的3D几何形状,我们将碘化丙锭和TTC染色与组织切片结合使用。我们通过光学标测数据和PI / TTC染色的组织获得的结果表明,与传统(RF)消融相比,在没有热副作用的情况下,可以更快地获得完全透壁的病变,并且可以更好地控制消融体积。为了帮助nsPEF消融计划,我们使用COMSOL有限元软件创建了心脏组织中电场分布的模型,该模型具有复杂的各向异性结构,适用于不同的电极配置。实验和数值结果是一致的,表明对于心脏组织的死亡,临界电场强度为3kV / cm。通过数值模型获得的阈值可作为未来临床nsPEF治疗房颤的指南。总之,我们开发了nsPEF消融治疗心律不齐,以提供比常规(RF)消融更好的控制消融量,以减少手术时间,并避免热副作用。我们的最终目标是将该技术引入临床实践。

著录项

  • 作者

    Xie, Fei.;

  • 作者单位

    Old Dominion University.;

  • 授予单位 Old Dominion University.;
  • 学科 Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 古生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号