首页> 外文学位 >Temperature-index modeling of mass balance and runoff in the Valdez Glacier catchment in 2012 and 2013.
【24h】

Temperature-index modeling of mass balance and runoff in the Valdez Glacier catchment in 2012 and 2013.

机译:2012年和2013年瓦尔迪兹冰川流域的质量平衡和径流温度指数模型。

获取原文
获取原文并翻译 | 示例

摘要

Glaciers play an important role in both storage and generation of runoff within individual watersheds. The Valdez Glacier catchment (342 km2), located in southern Alaska in the Chugach mountains off of Prince William Sound, is characterized by large annual volumes of rain- and snowfall. As Valdez Glacier and other glaciers within the catchment (comprising 58% of the catchment area) continue to melt in a warming climate, it is unclear how the runoff will be affected. Temperature-index modeling is one method used to estimate glacier mass balance and runoff in highly glacierized catchments, and may be suitable for predicting future runoff regimes. In this study, we used a combination of field measurements (air temperature, glacier mass balance, streamflow, and ground-penetrating radar (GPR)-derived snow water equivalent (SWE) from a parallel study) and modeled climate data (PRISM) to a) calibrate a temperature-index model to glacier mass balance in 2012; b) validate the model to laser altimetry; and c) calibrate a temperature-index model to runoff measurements in fall of 2012 and in spring, summer and fall of 2013.;We calibrated the snow-radiation coefficient (rsnow), ice-radiation coefficient (rice), and melt factor (MF) of the temperature-index model to glacier mass balance measurements from 2012. Using the calibrated- rsnow, r ice, and MF (i.e. rsnow, rice, and MF = 0.20, 0.50 and 4.0, respectively), we calculated 2012 annual glacier mass balance (Ba) at 0.05 +/- 0.49 meters water equivalent (m w.eq.). We next validated the model to 2012 laser altimetry annual glacier mass balance estimates (Ba = 0.20 +/- 0.6 m w.eq.). We then modeled glacier mass balance in 2013 using rsnow, rice, and MF from the 2012 calibration. The model underestimated summer glacier mass balance in 2013, resulting in annual glacier mass balance (Ba = 0.55 m w.eq.) that did not fall within the 2013 laser altimetry annual balance estimate (Ba = -1.15 +0.29/-0.30 m w.eq.). We therefore re-calibrated MF to 2013 laser altimetry measurements, resulting in an annual glacier mass balance (Ba) of -1.10 +/- 0.49 m w. eq. We next calibrated the storage constants of the runoff model to hydrographs from mid-September until mid-October 2012, and from May until October 2013, with r snow, rice, and MF set to values from the 2012 glacier mass balance calibration. Total modeled runoff in mid- September until mid-October 2012 was within 3% of measured runoff ( E- and lnE- were 0.54 and 0.76, respectively). Modeled runoff in 2013 was calculated to within 5% of 2013 runoff measurements (E- and lnE-values of 0.79 and 0.70, respectively). We next modeled runoff in 2013 using MF from the 2013 glacier mass balance calibration to laser altimetry (i.e. MF = 7.0). The fit of 2013 modeled to measured runoff was reduced (E- and lnE- values of 0.44 and 0.54, respectively), suggesting that additional glacier mass balance measurements are necessary in 2013 in order to properly calibrate the model. Results indicate that glacier melt parameters likely vary inter-annually. Therefore, the temperature-index model is capable of modeling both glacier melt and runoff in a maritime catchment, provided that ablation stake, air temperature, precipitation, and streamflow measurements are available for the simulation period.
机译:在单个流域内,冰川在径流的存储和产生中都起着重要作用。瓦尔迪兹冰川流域(342平方公里)位于威廉王子湾附近楚加奇山脉的阿拉斯加南部,其特点是每年大量降雨和降雪。随着流域内的瓦尔迪兹冰川和其他冰川(占流域面积的58%)继续融化,目前尚不清楚径流将如何受到影响。温度指数模型是一种用于估算高度冰川化流域冰川质量平衡和径流的方法,并且可能适用于预测未来的径流状况。在这项研究中,我们结合了现场测量(气温,冰川质量平衡,水流和地面渗透雷达(GPR)得出的平行研究得出的雪水当量(SWE))和模拟气候数据(PRISM)的组合, a)在2012年校准温度指数模型以适应冰川质量平衡; b)验证模型以进行激光测高; c)校准温度指数模型以测量2012年秋季以及2013年春季,夏季和秋季的径流。;我们校准了雪辐射系数(rsnow),冰辐射系数(rice)和融化因子(从2012年开始的温度指数模型到冰川质量平衡测量中。使用校准的rsnow,r ice和MF(即rsnow,大米和MF分别为0.20、0.50和4.0),我们计算了2012年的冰川质量当量(Ba)在0.05 +/- 0.49米水当量(m w.eq.)时。接下来,我们将模型验证为2012年激光测高仪的年度冰川质量平衡估计值(Ba = 0.20 +/- 0.6 m w.eq.)。然后,我们使用2012年校准中的rsnow,大米和MF对2013年的冰川质量平衡建模。该模型低估了2013年夏季冰川的质量平衡,导致年度冰川质量平衡(Ba = 0.55 m w.eq.)不属于2013年激光测高仪年度平衡估计值(Ba = -1.15 + 0.29 / -0.30 m w等价)。因此,我们将MF重新校准至2013年的激光测高仪测量结果,得出的年冰川质量平衡(Ba)为-1.10 +/- 0.49 m w。 eq。接下来,我们将径流模型的存储常数从2012年9月中旬至2012年10月中旬以及从2013年5月至2013年10月进行水文图校准,并将r雪,大米和MF设置为2012年冰川质量平衡校准中的值。 9月中旬至2012年10月中旬的模型总径流量在实测径流量的3%以内(E和lnE-分别为0.54和0.76)。 2013年的模拟径流被计算为2013年径流测量值的5%以内(E值和lnE值分别为0.79和0.70)。接下来,我们使用从2013年冰川质量平衡校准到激光测高的MF对2013年径流进行建模(即MF = 7.0)。 2013年对测得的径流建模的拟合度降低了(E-值和lnE-值分别为0.44和0.54),这表明在2013年需要进行额外的冰川质量平衡测量,以正确地校准模型。结果表明,冰川融化参数可能每年变化。因此,温度指数模型能够对海上集水区的冰川融化和径流进行建模,前提是在模拟期间可以使用消融桩,空气温度,降水和流量测量。

著录项

  • 作者

    Davis, Jennifer L.;

  • 作者单位

    University of Alaska Fairbanks.;

  • 授予单位 University of Alaska Fairbanks.;
  • 学科 Geophysics.;Geographic information science and geodesy.
  • 学位 M.S.
  • 年度 2015
  • 页码 104 p.
  • 总页数 104
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号