首页> 外文学位 >Inorganic nanoparticles for the spatial and temporal control of organic reactions: Applications to radical degradation of biopolymer networks.
【24h】

Inorganic nanoparticles for the spatial and temporal control of organic reactions: Applications to radical degradation of biopolymer networks.

机译:用于有机反应的时空控制的无机纳米粒子:在生物聚合物网络的自由基降解中的应用。

获取原文
获取原文并翻译 | 示例

摘要

Nanoparticles of gold and iron oxide not only possess remarkable optical and magnetic properties, respectively, but are also capable of influencing their local environment with an astounding degree of precision. Using nanoparticles to direct the reactivity of organic molecules near their surface provides a unique method of spatial and temporal control. Enediynes represent an exceptional class of compounds that are thermally reactive to produce a diradical intermediate via Bergman cycloaromatization. While natural product enediynes are famously cytotoxic, a rich chemistry of synthetic enediynes has developed utilizing creative means to control this reactivity through structure, electronics, metal chelation, and external triggering mechanisms. In a heretofore unexplored arena for Bergman cyclization, we have investigated the reactivity of enediynes in connection with inorganic nanoparticles in which the physical properties of the nanomaterial are directly excited to thermally promote aromatization. As the first example of this methodology, gold nanoparticles conjugated with (Z)-octa-4-en-2,6-diyne-1,8-dithiol were excited with 514 nm laser irradiation. The formation of aromatic and polymeric products was confirmed through Raman spectroscopy and electron microscopy. Water soluble analogues Au-PEG-EDDA and Fe3O4-PEG-EDDA (EDDA = (Z)-octa-4-en-2,6-diyne-1,8-diamine) show similar reactivity under laser irradiation or alternating magnetic field excitation, respectively. Furthermore, we have used these functionalized nanoparticles to attack proteinaceous substrates including fibrin and extracellular matrix proteins, capitalizing on the ability of diradicals to disrupt peptidic bonds. By delivering a locally high payload of reactive molecules and thermal energy to the large biopolymer, network restructuring and collapse is achieved. As a synthetic extension towards multifunctional nanoparticles, noble metal seed-decorated iron oxides have also been prepared and assessed for their catalytic activity. These materials provide a conceptual framework for controlling and manipulating reaction dynamics across nanometer length scales.
机译:金和氧化铁的纳米颗粒不仅分别具有出色的光学和磁性,而且还能够以惊人的精度影响其局部环境。使用纳米颗粒来指导有机分子在其表面附近的反应性提供了一种独特的空间和时间控制方法。对映体代表一类特殊的化合物,它们通过Bergman环芳烃化反应具有热反应性以生成双自由基中间体。虽然天然产物烯二炔具有细胞毒性,但合成烯二炔的丰富化学物质已经利用创新手段通过结构,电子学,金属螯合和外部触发机制控制了这种反应性。在迄今尚未探索的用于Bergman环化的领域中,我们已经研究了烯二炔与无机纳米颗粒的反应性,其中纳米材料的物理性质被直接激发以热促进芳构化。作为该方法的第一个例子,与(Z)-octa-4-en-2,6-diyne-1,8-dithiol共轭的金纳米颗粒用514 nm激光照射进行了激发。通过拉曼光谱和电子显微镜确认了芳族和聚合物产物的形成。水溶性类似物Au-PEG-EDDA和Fe3O4-PEG-EDDA(EDDA =(Z)-octa-4-en-2,6-diyne-1,8-diamine)在激光辐照或交变磁场激发下表现出相似的反应活性, 分别。此外,我们利用这些功能化的纳米颗粒利用双自由基破坏肽键的能力,攻击包括纤维蛋白和细胞外基质蛋白在内的蛋白质底物。通过将局部高反应活性分子和热能的有效负载传递给大型生物聚合物,可以实现网络的重组和崩溃。作为多功能纳米颗粒的合成延伸,还制备了贵金属种子修饰的氧化铁并评估了其催化活性。这些材料提供了一个概念框架,用于控制和控制纳米级尺度上的反应动力学。

著录项

  • 作者

    Walker, Joan Marie.;

  • 作者单位

    Indiana University.;

  • 授予单位 Indiana University.;
  • 学科 Analytical chemistry.;Inorganic chemistry.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号