首页> 外文学位 >Aerothermoelastic modeling and simulation of aerospace vehicles using particle-based methods.
【24h】

Aerothermoelastic modeling and simulation of aerospace vehicles using particle-based methods.

机译:使用基于粒子的方法对航空航天器进行航空热弹性建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

As hypersonic aerospace vehicles are designed to increased performance specifications utilizing lighter weight, higher strength materials, fluid-structural interaction (FSI) effects become increasingly important to model, especially considering the increasing use of numerical models in many phases of design. When a fluid flows over a solid, a force is imparted on the solid and the solid deforms. This deformation, in turn, causes a change in the fluid flow field which modifies the force distribution on the structure. This FSI induced deformation is a primary area of study within the field of aeroelasticity. To further complicate the matter, thermodynamic and chemical effects are vitally important to model in the hypersonic flow regime.;Traditionally, two separate numerical models are utilized to model the fluid and solid phases and a coupling algorithm accomplishes the task of modeling FSI. Coupling between the two solvers introduces numerical inaccuracies, inefficiencies, and for many mesh-based solvers, large deformations cannot be modeled. For this research, a combined Eulerian grid-based and Lagrangian particle-based solver known as the Material Point Method (MPM) is introduced and defined from prior research by others, and the particular MPM numerical code utilized in this research is outlined. The code combines the two separate solvers into a single numerical algorithm with separate constitutive relations for the fluid and solid phase, thereby allowing FSI modeling within a single computational framework.;A limiter is applied to reduce numerical noise and oscillations around shock and expansion waves and exhibits a large reduction in oscillation amplitude and frequency. A Fourier's Law of Conduction heat transfer algorithm is implemented for heat transfer at a fluid-structure interface. The results from this heat transfer algorithm are compared with an independently developed numerical code for the single ramp case and experimental data for the double cone case. Finally, a reacting flow model is exhibited, the results are compared to other numerical solutions for verification and recommendations are made for further research.
机译:随着高超音速航空航天器被设计为使用更轻的重量,更高强度的材料来提高性能规格,流体-结构相互作用(FSI)的影响对于建模变得越来越重要,尤其是考虑到在设计的许多阶段越来越多地使用数值模型。当流体流过固体时,会在固体上施加力,并且固体会变形。这种变形继而引起流体流场的变化,从而改变了结构上的力分布。这种FSI引起的变形是在空气弹性领域研究的主要领域。为了使问题进一步复杂化,热力学和化学效应对于在超音速流态下进行建模至关重要。传统上,利用两个单独的数值模型对流体和固相进行建模,耦合算法完成了对FSI建模的任务。两个求解器之间的耦合引入了数值误差,效率低下,并且对于许多基于网格的求解器,无法对大变形进行建模。对于本研究,介绍并结合了其他人先前的研究,定义了一种基于欧拉网格和拉格朗日粒子的组合求解器,称为“材料点方法”(MPM),并概述了本研究中使用的特定MPM数值代码。该代码将两个单独的求解器组合到一个具有独立的流体和固相本构关系的数值算法中,从而允许在单个计算框架内进行FSI建模。应用限制器来减少数值噪声和冲击波与膨胀波周围的振荡,以及表现出大幅降低的振荡幅度和频率。实现了傅里叶热导定律传热算法,用于在流体结构界面进行传热。将这种传热算法的结果与独立开发的用于单斜面情况的数字代码和用于双锥面情况的实验数据进行比较。最后,展示了一个反应流模型,将结果与其他数值解决方案进行了比较以进行验证,并提出了进一步研究的建议。

著录项

  • 作者

    Mason, Matthew Scott.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 72 p.
  • 总页数 72
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号