首页> 外文学位 >Electrochemical Sensing for a Rapidly Evolving World.
【24h】

Electrochemical Sensing for a Rapidly Evolving World.

机译:迅速发展的世界中的电化学传感。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism.;An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C.;In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding technology we move from performing non-scalable experiments to produce one sensor at a time to scalable experiments producing six. The bonding methods we use are compatible with wafer scale processing. Practically speaking this means that the oxygen sensor design is scalable to produce thousands of sensors from one single bond. Using this bonding technology we develop a generalized sensing platform that could be used for a variety of sensing applications, including oxygen sensing, but also potentially involving CO2 or NOx as well. Future efforts will involve completing of O2 sensor construction and adaption of the design for CO2 and NOx sensing.;The final project focuses on a novel ammonia sensor and sensing mechanism in Ag loaded zeolite Y. The sensor resistance changes upon exposure to ammonia due to the molecular recognition of Ag+ and ammonia, producing Ag(NH3)x+ species. The sensing mechanism is a Grothuss like mechanism based on the hoping of Ag+ centers. The hopping frequency of Ag+ changes upon introduction of ammonia due to the reduced electrostatic interactions between Ag+ and the negatively charged zeolite framework upon formation of Ag(NH3) x+. The change in hopping frequency results in a measurable change in impedance.
机译:本文重点研究了涉及恶劣环境气体传感器开发的三个项目。第一个项目讨论了用于与普通电解质氧化钇稳定的氧化锆密封的多功能氧气传感器电极的开发。密封功能的目的是产生由金属/金属氧化物混合物维持的内部参考环境,这是电位计氧传感技术小型化的标准。该传感器测量内部参考与感测环境之间的电势。第二个项目讨论了氧气传感器的小型化和更通用的电化学传感平台的制造。第三个项目讨论了通过分子识别在氨的电化学传感中发现新机理的方法,以及利用该新机理利用传感器的方法。;涉及微波合成La0.8Sr0.2Al0.9Mn0的开发的初步研究.1O3传感器电极材料说明了所开发材料满足有效和能斯特氧感测的离子和电子导电要求的能力。此外,该材料在热等静压条件下在类似的温度和压力条件下与氧化钇稳定的氧化锆发生塑性变形,以产生密封并在高达1350°C的温度下生存。一个设备腔体,用于在洁净室环境中使用室温等离子体激活键合以及与硅本体的低温和压力辅助等离子体激活键合来生产电化学传感器本体。从等静压热压法发展到在洁净室中使用单晶硅衬底的室温互补金属氧化物半导体(CMOS)兼容技术,可以在更大范围内密封器件。通过键合技术的这种发展,我们从一次执行不可扩展的实验以一次生产一个传感器,过渡到可扩展的实验六种传感器。我们使用的键合方法与晶圆级处理兼容。实际上,这意味着氧气传感器的设计可扩展,可以通过一个键就生产数千个传感器。利用这种粘接技术,我们开发了一种通用的感应平台,该平台可用于多种感应应用,包括氧气感应,但也可能涉及CO2或NOx。未来的工作将涉及完成O2传感器的构造以及对CO2和NOx感测的设计的适应性。;最终项目的重点是新型的载银Ag沸石中的氨传感器和感测机制。 Ag +和氨的分子识别,产生Ag(NH3)x +物质。感测机制是基于Ag +中心的希望的类似Grothuss的机制。由于在形成Ag(NH3)x +时Ag +与带负电的沸石骨架之间的静电相互作用降低,Ag +的跳跃频率在引入氨后发生变化。跳跃频率的变化会导致可测量的阻抗变化。

著录项

  • 作者

    Mullen, Max Robertson.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Physical chemistry.;Materials science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 289 p.
  • 总页数 289
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号