首页> 外文学位 >Soil carbon and nitrogen dynamics and greenhouse gas mitigation in intercrop agroecosystems in Balcarce, Argentina.
【24h】

Soil carbon and nitrogen dynamics and greenhouse gas mitigation in intercrop agroecosystems in Balcarce, Argentina.

机译:阿根廷巴尔卡斯农作物间生态系统的土壤碳氮动态和温室气体减排。

获取原文
获取原文并翻译 | 示例

摘要

Through appropriate soil and crop residue management, soil can function as a sink for carbon (C) and nitrogen (N) for the mitigation of greenhouse gases (GHG). No research has yet investigated the potential of intercrop agroecosystems to reduce emissions of GHG to the atmosphere. This research evaluates whether maize-soybean intercrop agroecosystems sequester more C and N and emit fewer GHG than maize and soybean sole crop agroecosystems. An experiment was conducted at Balcarce, Argentina using four treatments: a maize sole crop, a soybean sole crop, and two intercrops with either 1:2 or 2:3 rows of maize to soybean. The objectives were to quantify soil organic carbon (SOC) and soil total nitrogen (TN) at 0-10, 10-20, 20-40, 40-80 and 80-120 cm depths, rates of decomposition of maize and soybean crop residue after 312 days, crop residue C- and N-input at harvest, and emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N 2O). Significant decreases in SOC were observed with depth in all treatments after 40 cm, and significant decreases in TN were observed with depth in all treatments after 20 cm. Crop residue from maize had the greatest input of C and N to the soil, but the slowest rate of decomposition. Soybean biomass had the least input of C and N to the soil and the fastest rate of decomposition. The 1:2 and 2:3 intercrop agroecosystems had moderate crop residue inputs of C and N and intermediate rates of decomposition. No significant differences in GHG emissions were detected between treatments throughout the growing season. The major influences on GHG emissions were weather events, soil temperature and moisture, and crop residue input. Annual GHG emissions were determined the CH4 sink in the 1:2 intercrop and the soybean sole crop was significantly greater (P 0.05) than the 2:3 intercrop and the maize sole crop. Emissions of CO2 were inversely proportionate to N2 O, with the greatest C sink in the 1:2 intercrop.
机译:通过适当的土壤和农作物残留管理,土壤可以充当碳(C)和氮(N)的汇,以缓解温室气体(GHG)。尚无研究调查间种农业生态系统减少向大气排放温室气体的潜力。这项研究评估了玉米-大豆间作农业生态系统是否比玉米和大豆单独农作物农业生态系统吸收更多的碳和氮,并减少温室气体排放。在阿根廷的巴尔卡斯(Balcarce)进行了一项实验,使用了以下四种处理方法:玉米单作,大豆单作和两个间作,玉米与大豆的比例为1:2或2:3。目的是量化0-10、10-20、20-40、40-80和80-120厘米深度处的土壤有机碳(SOC)和土壤总氮(TN),玉米和大豆作物残渣的分解速率312天后,收获时会残留农作物的碳和氮,并排放二氧化碳(CO2),甲烷(CH4)和一氧化二氮(N 2O)。在40 cm后的所有处理中,SOC均随深度显着降低,而在20 cm后的所有处理中,TN均显着下降。玉米的作物残渣向土壤中的碳和氮输入量最大,但分解速率最慢。大豆生物量向土壤中输入的碳和氮最少,分解速度最快。 1:2和2:3的农作物间生态系统的农作物残茬输入量为C和N,分解速率中等。在整个生长季节,不同处理之间未发现温室气体排放的显着差异。对温室气体排放的主要影响是天气事件,土壤温度和湿度以及农作物残渣的输入。确定了每年的GHG排放量,即1:2间作中的CH4沉降量,大豆单一作物比2:3间作和玉米单一作物的CH4吸收量显着更大(P <0.05)。 CO2的排放与N2 O成反比,最大的C吸收在1:2间作中。

著录项

  • 作者

    Vachon, Karen.;

  • 作者单位

    University of Waterloo (Canada).;

  • 授予单位 University of Waterloo (Canada).;
  • 学科 Biogeochemistry.Agriculture Soil Science.
  • 学位 M.E.S.
  • 年度 2009
  • 页码 117 p.
  • 总页数 117
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号