首页> 外文学位 >Defect energetics in uranium dioxide by electronic structure and atomistic level simulations.
【24h】

Defect energetics in uranium dioxide by electronic structure and atomistic level simulations.

机译:通过电子结构和原子级模拟,发现二氧化铀中的缺陷能量。

获取原文
获取原文并翻译 | 示例

摘要

Defect energetics in uranium dioxide is investigated using electronic structure and atomistic level simulations. The stability range of intrinsic point defects in uranium dioxide is determined as a function of temperature, oxygen partial pressure, and non-stoichiometry. In particular, the density functional theory (DFT) calculations are performed at the level of the spin polarized, generalized gradient approximation and includes the Hubbard U term as a result they predict the correct anti-ferromagnetic insulating ground state of uranium oxide. The predicted equilibrium properties and defect formation energies for neutral defect complexes match trends in the experimental literature quite well.Next, the stabilities of selected fission products---Xe, Cs, and Sr---are investigated as a function of non-stoichiometry x in UO2 using DFT and empirical potentials. In general, higher charge defects are more soluble in the fuel matrix and the solubility of fission products increases as the hyperstoichiometry increases. The solubility of fission product oxides is also explored. These observations mirror experimentally observed phenomena.Finally, the segregation of Xe to different grain boundaries is studied using empirical potentials. The segregation behavior is observed to be similar for the different boundaries qualitatively but the ease with which segregation occurs is found to depend on the type of boundary.
机译:使用电子结构和原子级模拟研究了二氧化铀中的缺陷能量。确定二氧化铀中本征点缺陷的稳定性范围是温度,氧分压和非化学计量的函数。特别是,密度泛函理论(DFT)计算是在自旋极化,广义梯度近似的水平上进行的,并且包含Hubbard U项,因此它们可预测氧化铀的正确反铁磁绝缘基态。中性缺陷配合物的预测平衡性质和缺陷形成能很好地与实验文献中的趋势相吻合。接下来,研究了裂变产物Xe,Cs和Sr的稳定性作为非化学计量的函数使用DFT和经验势在UO2中的x。通常,较高的电荷缺陷更易溶于燃料基体,裂变产物的溶解度随超化学计量的增加而增加。还探讨了裂变产物氧化物的溶解度。这些观察结果反映了实验观察到的现象。最后,利用经验势研究了Xe在不同晶界的偏析。对于不同的边界,在质量上观察到偏析行为是相似的,但是发现偏析的容易程度取决于边界的类型。

著录项

  • 作者

    Nerikar, Pankaj Vilas.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号