首页> 外文学位 >Understanding and improving the mechanical stability of semiconducting polymers for flexible and stretchable electronics.
【24h】

Understanding and improving the mechanical stability of semiconducting polymers for flexible and stretchable electronics.

机译:了解并改善用于柔性和可拉伸电子产品的半导体聚合物的机械稳定性。

获取原文
获取原文并翻译 | 示例

摘要

Polymeric semiconductors offer the promise of low-cost, printable, and mechanically robust electronic devices for use in outdoor, portable, and wearable applications such as organic photovoltaics, biosensors, and electronic skins. However, many organic semiconductors are unable to accommodate the mechanical stresses these applications require, and it is therefore important to understand the factors and parameters that govern the mechanical stability of these materials. Chapter 1 provides a gentle introduction to the electronic and mechanical properties relevant to flexible and stretchable organic semiconductor devices. The idea of inherent competition between electronic performance and mechanical robustness is explored. Chapter 2 investigates the inherent competition between good electronic performance and mechanical robustness in poly(3-alkylthiophene)s. A key finding is a critical alkyl side-chain length that allows for good electronic performance and mechanical compliance. Chapter 3 and Appendix A are further studies on the properties of poly(3-alkylthiophene)s with side-chains close to the critical length to gain better understanding of the transition from good electronic properties and poor mechanical properties to poor electronic properties and good mechanical properties. Chapter 4 and Appendix B detail the effects on mechanical and electronic properties of statistical incorporation of unlike monomer into a low-bandgap polymer backbone in an effort to disrupt aggregation and improve mechanical compliance. Chapter 5 explores how the extent of molecular mixing of polythiophenes and fullerenes---materials common in organic photovoltaics---affects their mechanical properties. Chapter 6 describes the invention of a new technique to determine the yield point of thin films. A dependence on the alkyl-side chain length is observed, as well as a critical film thickness below which the yield point increases substantially. In Chapter 7, the weakly interacting H-aggregate model---a spectroscopic model which estimates the quantity and quality of aggregates in a polymer film---is used to determine how the microstructure of a semiconducting polymer thin film evolves with repetitive strain. Samples strained below the yield point undergo little microstructural evolution, while samples strained above the yield point exhibit a significant decrease in aggregation and tensile modulus. Appendix C describes the invention of an environmentally-friendly fabrication technique, abrasion lithography.
机译:聚合物半导体有望提供低成本,可印刷且机械坚固的电子设备,用于室外,便携式和可穿戴应用,例如有机光伏,生物传感器和电子皮肤。但是,许多有机半导体无法适应这些应用所需的机械应力,因此了解控制这些材料机械稳定性的因素和参数非常重要。第1章简要介绍了与柔性和可拉伸有机半导体器件有关的电子和机械特性。探索了电子性能和机械强度之间固有竞争的思想。第2章研究了聚(3-烷基噻吩)中良好的电子性能和机械强度之间的内在竞争。一个关键发现是关键的烷基侧链长度,该长度允许良好的电子性能和机械顺应性。第三章和附录A是对侧链接近临界长度的聚(3-烷基噻吩)的性质的进一步研究,以更好地理解从良好的电子性能和不良的机械性能向不良的电子性能和良好的机械性能的过渡属性。第4章和附录B详细介绍了将不同单体统计掺入低带隙聚合物主链中对机械和电子性能的影响,以破坏聚集并提高机械顺应性。第五章探讨了聚噻吩和富勒烯(有机光伏中常见的材料)的分子混合程度如何影响其机械性能。第6章介绍了确定薄膜屈服点的新技术的发明。观察到对烷基侧链长度以及临界膜厚度的依赖性,在临界膜厚度以下,屈服点显着增加。在第7章中,弱相互作用的H聚集体模型(一种估计聚合物膜中聚集体的数量和质量的光谱模型)用于确定半导体聚合物薄膜的微观结构如何随着重复应变而演化。应变低于屈服点的样品几乎没有微观结构演变,而应变高于屈服点的样品表现出聚集和拉伸模量的显着降低。附录C描述了一种环境友好的制造技术,即磨蚀光刻技术。

著录项

  • 作者

    Printz, Adam David.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Materials science.;Nanoscience.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 290 p.
  • 总页数 290
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号